• Title/Summary/Keyword: Ca transient

Search Result 234, Processing Time 0.032 seconds

Identification of phospholipase Cβ downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels

  • Ko, Juyeon;Myeong, Jongyun;Kwak, Misun;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • $G{\alpha}_q$-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate ($PI(4,5)P_2$) depletion. When $PI(4,5)P_2$ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon $G{\alpha}_q$-phospholipase $C{\beta}$ ($G{\alpha}_q-PLC{\beta}$) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in $PLC{\beta}$ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by $Ca^{2+}$ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic $Ca^{2+}$ due to $Ca^{2+}$ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following $PI(4,5)P_2$ depletion.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia (우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향)

  • Yoon, Hyun-Seok;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Effects of Glibenclamide on $Na^+-K^+$ Pump and L-type $Ca^{2+}$ Channel in Guinea-pig Ventricular Myocytes

  • Lee, So-Young;Lee, Chin O.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.81-81
    • /
    • 2003
  • Glibenclamide, a sulfonylurea derivative, has been used in tile treatment of type II diabetes mellitus. Recent studies provided evidence that glibenclamide, in addition to blocking ATP-sensitive $K^{+}$ channels, also affected Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels in noncardiac cells. The effect of glibenclamide on the cardiac muscle is not clearly known. In the present study, the effects of glibenclamide on intracellular Na$^{+}$ concentration ([Na$^{+}$]$_{i}$ ), twitch tension, $Ca^{2+}$ transient, and membrane potential were investigated in isolated guinea-pig ventricular myocytes. Glibenclamide at concentration of 200 $\mu$M increased [Na$^{+}$]$_{i}$ by 3.9$\pm$0.4 mM (mean $\pm$ SE, n=12), decreased twitch tension by 36.1 $\pm$ 4.0% (mean $\pm$ SE, n=8), reduced $Ca^{2+}$ transient by 24.4$\pm$5.1% (mean $\pm$ SE, n=3), slightly depolarized diastolic membrane potential, and did not change action potential duration. To determine whether inhibitions of Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels are responsible for the increase of [Na$^{+}$]$_{i}$ and the decrease of twitch tension, we tested effects of glibenclamide on Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current. Glibenclamide decreased Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current in a concentration-dependent manner.t in a concentration-dependent manner.

  • PDF

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

  • Shin, Myoung Cheol;Lee, Tae-Kyeong;Lee, Jae-Chul;Kim, Hyung Il;Park, Chan Woo;Cho, Jun Hwi;Kim, Dae Won;Ahn, Ji Hyeon;Won, Moo-Ho;Lee, Choong-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

Fucoidan Extract from Laminaria religiosa Suppresses Ischemia-induced Apoptosis and Cell Proliferation in the Hippocampus of Gerbils

  • Lee, Jong-Jin;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.105-115
    • /
    • 2006
  • Fucoidan has been shown to exhibit a host of biological activities, including anti-coagulant, anti-thrombotic, anti-tumourigenic, anti-inflammatory, anti-viral, anti-complementary and neuroprotective effects. In the present study, we attempted to determine the effects of Fucoidan on both apoptosis and cell proliferation in the hippocampal CA1 region and the dentate gyrus of gerbils after the induction of transient global ischemia. This experiment involved the use of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay as well as immunohistochemisty for caspase-3 and 5-bromo-2'-deoxyuridine (BrdU). The monosaccharide composition of the purified Fucoidan which had been extracted from Laminaria religiosa was utilized in this study. The present study clearly induces that apoptotic cell death and cell proliferation in the gerbil's hippocampal regions increased significantly following the induction of transient global ischemia and the results of this study also indicate that Fucoidan exerted a suppressive effect on this observed ischemia-induced increase in apoptosis within the CA1 and dentate gyrus, and also suppressed cell proliferation in the dentate gyrus.

  • PDF

Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases

  • Xiao, Xiong;Liu, Hui-Xia;Shen, Kuo;Cao, Wei;Li, Xiao-Qiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.471-481
    • /
    • 2017
  • The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of $Ca^{2+}$ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebro-vascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.

Transient Increase of Lipocortin 1 in Nuclei of the Hippocampal Pyramidal Neurons in Rats Induced by Immobilization Stress

  • Park, Hyoung-Sup;Jang, Yeon-Jin;Kim, Dong-Hou;Lee, Su-Ok;Na, Doe-Sun
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.117-122
    • /
    • 1998
  • Changes of lipocortin 1 (LC1) in the brain induced by immobilization stress were investigated in rats. Rats were immobilized for 0,1,2,3,4, and 5 h, and the brain slices were immunostained with anti-human LC1 antibodl (anti-LC1). Immunoreactivity of LCI (iLC1) was most prominent in neuronal cell bodies and processes of hippocampal CA regions and dentate gyrus. At rest without stress, most of the LC1 in the neuron located in the cytoplasm with the nuclei exhibiting relatively scarce immunoreactivity. Immobilization stress changed this intracellular distribution of LC1 by increasing nuclear LC1. The change was apparent in 1 h and reached the peak by 3 h. However, by 5 h of immobilization, the distribution pattern returned to that of the resting state. This transient nuclear translocation of LC1 was most prominent in $CA_1$ pyramidal neurons, and was not observed in areas other than the hippocampus. Adrenalectomy abolished this transient translocation of LC1. The roles of hippocampal LC1 as a mediator of glucocorticoid feedback signal and/or as an intracellar stress signaling protein could be suggested.

  • PDF

Inhibition of the Desensitization of Canonical Transient Receptor Potential Channel 5 by Dimethyl Sulfoxide

  • Kim, Byung-Joo;So, In-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.227-231
    • /
    • 2007
  • The classic type of transient receptor potential channel(TRPC) is a molecular candidate for $Ca^{2+}$-permeable cation channel in mammalian cells. TRPC5 is rapidly desensitized after activation by G protein-coupled receptor. Herein we report the effect of dimethyl sulfoxide(DMSO) on the desensitization of TRPC5. TRPC5 was initially activated by muscarinic stimulation with $50{\mu}M$ carbachol(CCh) and then decayed rapidly even in the presence of CCh(desensitization). DMSO in the pipette solution slowed the rate of this desensitization. Under the control conditions, TRPC5 current spontaneously declined to $6{\pm}1%$ of the initial peak amplitude 60 sec after CCh application and to $1{\pm}0.5%$ after 120 sec. But, in the presence of 0.01%, 0.1% and 1% DMSO, TRPC5 current spontaneously declined to $55{\pm}2%,\;68{\pm}1%\;and\;100{\pm}0.2%$ of the initial peak amplitude 60 sec after CCh application and to $38{\pm}2%,\;61{\pm}1%\;and\;100{\pm}1%$ after 120 see, respectively. The results suggest that DMSO can internally attenuate the desensitization of TRPC5 current through unknown mechanisms that remain to be elucidated.

Increase of Peroxynitrite Production in the Rat Brain Following Transient Forebrain Ischemia

  • Kim, Hee-Joon;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.205-212
    • /
    • 2001
  • It has been proposed that nitirc oxide is involved in the pathogenesis of cerebral ischemia-reperfusion. Because superoxide production is also enhanced during reperfusion, the cytotoxic oxidant peroxynitrite could be formed, but it is not known if this occurs following global forebrain ischemia-reperfusion. We examined whether peroxynitrite generation is increased in the vulnerable regions after forebrain ischemia-reperfusion. Transient forebrain ischemia was produced in the conscious rat by four-vessel occlusion. Rats were subjected to 10 or 15 min of forebrain ischemia. Immunohistochemical method was used to detect 3-nitrotyrosine, a marker of peroxynitrite production. 3-Nitrotyrosine immunoreactivity was enhanced in the hippocampal CA1 area 3 days after reperfusion. Furthermore, in rats subjected to ischemia for 15 min, this change was also observed in the lateral striatal region and the lateral septal nucleus $2{\sim}3$ days after reperfusion. The cresyl violet staining of adjacent sections showed that neuronal cell death was induced in parallel with the nitrotyrosine immunoreactivity in the hippocampal CA1 area and the lateral striatal region. Our findings suggest that oxygen free radical accumulation and consequent peroxynitrite production play a role in neuronal death caused by cerebral ischemia-reperfusion.

  • PDF