• Title/Summary/Keyword: CZ method

Search Result 65, Processing Time 0.032 seconds

Micro-defects in $LiNbO_3$ single crystals with congruent melting composition (조화용융성조성을 가진 $LiNbO_3$ 단결성의 미소결함)

  • 김현기;권달회;이선우;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.267-272
    • /
    • 1999
  • Micro-defects in the undoped and MgO-doped $LiNbO_3$ single crystals, which were grown from a congruent melting composition (48.6 mol% $Li_2$O) by the CZ (Czochralski) method, were analyzed using microscopic techniques such as optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Effects of the dopant and g value (the fraction solidfied) on the domain structure and micro-defect were investigated to build a corelationship with a growth condition of crystal. It was observed that the micro-defect concentrated near the domain wall is caused by high stress. Especially, the micro-defect was observed to be biased toward a certain side of the domain wall.

  • PDF

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Epidemiological characteristics on fowl typhoid outbreak in Kyongnam province and comparison of diagnostic methods for identification of salmonella gallinarum (경남지역에서 발생한 가금티푸스의 역학적 특성 및 진단방법에 대한 비교 시험)

  • 최유정;김도경;김용환
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.4
    • /
    • pp.349-360
    • /
    • 2000
  • An epidemiological survey was conducted to investigate fowl typhoid outbreaks in Kyungnam province of Korea. The causative agent, salmonella gallinarum was isolated from 68 chicken samples of tentatively diagnosed fowl typhoid cases occurred during the period from January 1996 to September 1999. Comparative studies were also carried out to evaluate the diagnostic methods for detection of S gallinam The results obtained were as follows; 1. Of the 68 cases of tentatively diagnosed fowl typhoid, 56 (82%) cases were determined as fowl typhoid by biochemical test and pathological findings. The other 12 (18%) cases were determined as paratyphoid. 2. Fowl typhoid outbreaks occur continuously all seasons in the year, however the incidence was remarkably increased from May to September. 3. The frequency of incidence of fowl typhoid in terms of regional distribution was relatively high in egg-laying hens facilities, and the mode of transmission is likely to be either egg-to-egg or lateral transfer by wild birds or rats. 4. All of 18 isolates from 56 cases were identified as S gallinarum by biochemical and serological test. 5. Antimicrobial drug susceptibility test against 18 isolates showed that the isolates were highly susceptible to ASH, CZ, CF and GM (above 90%), whereas those strains were 100% resistant to EM, NA and PC. 6. S gallinarum rfbS gene was targeted to be amplified by PCR for comparative detection of S gallinarum in the experimentally infected chickens. The amplified 720bp DNA fragment, which is specific in D serogroup strains of S enterica subspecies was confirmed by agarose gel electrophoresis. 7. A comparison made between fecal culture and PCR-method revealed that later-method was relatively higher in detection rate than that of former method for S gallinarum. 8. Comparison of currently applied methods, rapid serum agglutination test (RST) and microplate agglutination test (MAT), with experimentally infected chickens were made to evaluate sensitivity of detection by neutralizing antibody titration. Both methods detected neutralizing antibodies from the challenged chickens of 5 day post infection. However, positive reactions were determined after 7 and 9 days post infection by MAT and RST, respectively.

  • PDF

The Research of Ni/Cu/Ag Contact Solar Cells for Low Cost & High Efficiency in Crystalline Solar Cells (결정질 실리콘 태양전지의 저가 고 효율화를 위한 Ni/Cu/Ag 전극 태양전지)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.214-219
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cells, If high-efficiency solar cells are to be commercialized. It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper and Silver are applied widely in various electronic manufactures as easily formation is available by plating. The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposite the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 14.68 % on $0.2{\sim}0.6{\Omega}{\cdot}cm,\;20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Analysis of Chemical and Mechanical Properties of UV Curing Resin (UV 경화 수지의 화학적 기계적 경화특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.88-95
    • /
    • 2020
  • Currently, Fiber-Reinforced Plastic (FRP) composite materials are used in many industrial fields, owing to their superior stiffness and specific strength compared to metals. However, there are issues with FRP inefficiency, due to low productivity of such materials, environmental problems they pose and long curing times needed. Trying to address these issues, research was conducted towards the development of a FRP composite material with excellent properties and short production time, introducing a curing method using a UV lamp. Four types of composite materials were prepared, cured with catalyst or UV (CZ: Catalyst + ZNT 6345, CR: Catalyst + RF 1001 MV, UVZ: Photoinitiator + ZNT 6345, and UVR: Photoinitiator + RF 1001 MV). Examination of the chemical and mechanical properties of these composites showed that UV-cured materials performed better than the catalyst-cured ones. These results indicate that the production process of FRP composite materials can be simplified by using a UV lamp for curing, resulting in composite materials with the same quality, but reduced production time by about 70% compared to currently used practices. This advancement will contribute greatly to the composite material industry.

A Study of Optimum Growth Rate on Large Scale Ingot CCz (Continuous Czochralski) Growth Process for Increasing a Productivity (생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구)

  • Lee, Yu-Ri;Roh, Ji-Won;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.775-780
    • /
    • 2016
  • Recently, photovoltaic industry needs a new design of Czochralski (Cz) process for higher productivity with reasonable energy consumption as well as solar cell's efficiency. If the process uses the large size reactor for increasing productivity, it is possible to produce a 12-inch, rather than the 8-inch. Also the continuous czochralski process method can be maximized to increase productivity. In this study, it was designed to improve the yield value of ingot with optimal condition which reduce consumption of electrical power. It has increased the productivity of the 12-inch ingot process condition by using CFD simulation. I have found optimal growth rate, by comparing each growth rate the interface shape, Temperature gradient, power consumption. As a result, the optimal process parameters of the growth furnace has been derived to improve for the productivity and to reduce energy. This study will contribute to the improvement of the productivity in the solar cell industry.

Antimicrobial Susceptibility of Escherichia coli Isolated from Fish Farms on the Southern Coast of Korea (남해안 어류양식장에서 분리된 Escherichia coli에 대한 항균제 감수성)

  • Son, Kwang-Tae;Oh, Eun-Gyoung;Park, Kun-Ba-Wui;Kwon, Ji-Young;Lee, Hee-Jung;Lee, Tae-Seek;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.322-328
    • /
    • 2009
  • Three-hundred and sixteen Escherichia coli strains from seawater, and a variety of farmed fishes, including oliver flounder (Paralichthys olivaceus), black rock fish (Sebastes schlegeli), red sea bream (Pagrus major) and sea bass (Lateolabrax japonicus) between May to October in 2004, were tested by agar dilution method to determine their susceptibility patterns to 17 antimicrobial agents. Overall, 92.1% of Escherichia coli isolates from samples showed antimicrobial resistance to at least one antimicrobial agent and the multiple resistance was seen in 173 isolates (54.7%). The resistance of E. coli isolates to tetracycline (74.1%) was highest, followed by cephalothin (69.9%), doxycycline (66.5%), streptomycin (47.2%), ampicillin (46.2%), cefazolin (31.6%), enrofloxacin (31.0%). norfloxacin (28.2%). The most frequent resistance pattern was TE-D-CF-CIP-ENO-NOR-AM-S-C-SXT-AmC-CZ (14.7%), followed by CF (6.2%), TE (5.1%), TE-CF (4.5%) in 177 isolates from fishes and TE-D-CF (7.2%) followed by TE-D-CF-S (5.8%), CF and TE-D-S (3.6%) in 139 isolates from seawater.

Study of P-type Wafer Doping for Solar Cell Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 P타입 태양전지 웨이퍼 도핑 연구)

  • Yun, Myoungsoo;Jo, Taehun;Park, Jongin;Kim, Sanghun;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.120-123
    • /
    • 2014
  • Thermal doping method using furnace is generally used for solar-cell wafer doping. It takes a lot of time and high cost and use toxic gas. Generally selective emitter doping using laser, but laser is very high equipment and induce the wafer's structure damage. In this study, we apply atmospheric pressure plasma for solar-cell wafer doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (1 kHz ~ 100 kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer (120 ohm/square). SIMS (Secondary Ion Mass Spectroscopy) are used for measuring wafer doping depth and concentration of phosphorus. We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

The Crystal Growth of $Bi_{12}GeO_{20}$ Single Crystal by the CZ Technique with New Weighing Sensor (II) (새로운 무게센서에 의한 $Bi_{12}GeO_{20}$ 단결정 육성연구(II))

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • A new frequency weighing sensor was applied to grow Bi12GeO20 crystals in the auto-di-ameter control system of Czochralski method. The rotation rate was varied in the range of 23 to 21 rpm to preserve flat interface in a given heat configuration. To prevent the constitutional super-cooling from the evaporation loss, 105% stoichiometric amount of Bi2O3 was employed, equivalent to 6.18 molar ratio of Bi2O3 to GeO2. Transparent and light brown Bi12GeO20 single crystal in uniform diameter was grown. The dislocation density was determined to be 103/cm2 corresponding to the optical quality in commercial applications. The grown crystal measured diameter 25 mm and length 70 mm and the preferred growth direction was confirmed to be <110>.

  • PDF