• Title/Summary/Keyword: CYP450

Search Result 436, Processing Time 0.029 seconds

Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius (분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가)

  • Kim, Won-Seok;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Heavy metals are common pollutants in the freshwater environment and have toxicological effect in habitat organisms. The heavy metals highly accumulated in sediment and organism, and observed various physiological responses. In this study, we investigated the molecular response to heavy metal toxicity (Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) through expression of heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450 (CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP). HSPs showed up-regulation in Cu and Zn exposures. Furthermore, HSPs expression in treated groups tended to be higher than the control group. The tendency of CYP450 and GST mRNA expression was higher for Cr and Cu than for other exposure group. The expression of SP gene was low at Al exposure and other group were measured to be similar to control. These results suggest that heavy metal toxicity in freshwater ecosystem may affect physiological and molecular process. Also, the comprehensive gene expression in the aquatic midge Chironomus riparius give useful information to potential molecular biomarkers for assessing heavy metal toxicity.

Responses in Hepatic Xenobiotic Metabolizing and Antioxidant Enzymes in Javelin Goby Acanthogobius hasta Collected at Shihwa Lake (시화호에서 채집한 풀망둑 Acanthogobius hasta의 간장 약물대사효소계 및 항산화계의 반응)

  • Lee, Ji-Seon;Jeong, Jee-Hyun;Han, Chang-Hee;Shim, Won-Joon;Jeon, Joong-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.94-101
    • /
    • 2008
  • The aim of this study was to assess the responses of mixed function oxygenase (MFO) and antioxidative systems of feral Javelin goby, Acanthogobius hasta, caught in two sites of different pollution level in Shihwa lake, which has been a highly polluted lake by organic pollutants from nearby industrial complexes and sites. Enzymes analyzed in phase I of MFO system are cytochrome P450 (CYP), NADPH-cytochrome P450 reductase (P450R), NADH-cytochrome b5 reductase (b5R), and ethoxyresorufin deethylase (EROD). Phase II enzyme of glutathione S-transferase (GST) in MFO system was also investigated. Moreover, oxidative-enzyme system including catalase (CAT), glutathione reductase (GR) and total-glutathione peroxidase (GPX) activities and glutathione concentration in both of oxidized (GSSG) and reduced form (GSH) were determined. P450R, b5R, and GST activities of fish are relatively high in the polluted area, whereas hepatic EROD activity levels of fish in polluted area were lower than those of unpolluted area. CYP concentrations are not different between areas. These results indicated that feral Acanthogobius hasta were adaptive to highly polluted environment and exposed to oxidative stress in Shihwa lake.

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Effects of herbal-aupuncture solution from vitis labrusca root on LPO, RNS and cytochrome P450 (포도근 약침액이 LPO, RNS 및 Cytochrome P450에 미치는 효과)

  • Lim, Seong-Cheorl;Kim, Hyuck;Lee, Hyo-Seung;Park, Won-Hwan;Moon, Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2007
  • Objectives : In this study, we determinated protective effects of Vitis labrusca Root herbal-acupuncture solution (VLHA) against atherosclerosis and cardiovascular disease induced by oxidative damage and cytochrome P450 (CYP) induction. Methods : Antioxidant capacity of VLHA were evaluated by the ${\beta}-carotene/linoleic$ acid emulsion system and FeCl2-ascorbic acid stimulted lipid peroxidation in rat liver homogenate, respectively. Scavenging effects of VLHA on ONOO- and NO were measured by DHR 123, DAF-2 assay. Furthermore, we measured inhibitory activity of VLHA on CYP 2E1 in rat liver microsome using by Aniline assay. Results : VLHA exhibited potent inhibition rate(74%) on FeCl2-ascorbic acid induced lipid peroxidation, and revealed a strong scavenging effects on ONOO- and NO. In addition, VLHA showed inhibitory effect on CYP 2E1. Conclusions : The present study concludes that our results suggest that VLHA could be used as a good source in the prevention of atherosclerosis and alcoholic liver injury.

  • PDF

Inhibitory Effects of Medicinal Herbs on Cytochrome P450 Drug Metabolizing Enzymes (생약추출물의 Cytochrome P450 약물대사 효소계 저해활성)

  • Jeong, Hye-Gwang;You, Ho-Jin;Chang, Young-Su;Park, Sung-Jun;Moon, Young-Hee;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.35-41
    • /
    • 2002
  • The MeOH ext., $CH_2Cl_2$ Frac., EtOAc Frac., n-BuOH Frac., and $H_2O$ Frac. of 23 Korean medicinal herbs were prepared and were tested the inhibitory effects on Cytochrome P450 (Cyp) 1A1/2, 2B1/2, 2E1. Among the tested samples, the extracts of Selaginella tamariscina, Euonymus alatus, Salvia miltiorhiza, Angelica acutiloba, Rheum palmatum, Paeonia moutan, Scutellaria barbata, Tribulus terrestris, Hedyotis diffusa, Curcuma zedoaria, Rehmania glutinosa, Trogopterus xanthipes, Melandryum firmum, Achyranthes bidentata, Leonurus sibricus, Panax ginseng, Paeonia lactiflora, Poncirus trifoliata, Cnidium officinale, Cyperus rotundus, Corydalis ternata showed significant inhibitory effects on Cyp 1A1/2, 2B1/2, 2E1. The $IC_{50}$ values of those extracts were found to be below $50\;{\mu}g/ml$.

Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa

  • Lee, Eun-Chang;Ohk, Seul-Ong;Suh, Bo-Young;Park, Na-Hee;Kim, Beom-Joon;Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff.

Trichostatin A, a Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in Hepa-I Cells

  • Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately $30\%$ of the total liver CYPs contents and is involved in the metabolism of more than $60\%$ of currently used therapeutic drugs. However, the molecular mechanisms underly-ing regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-1 cells were transfected with a plasmid containing ${\~}1kb$ of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-1 cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors.

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.