DOI QR코드

DOI QR Code

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi (School of Biological Sciences and Technology, Chonnam National University) ;
  • Jeong, Heon (School of Biological Sciences and Technology, Chonnam National University) ;
  • Ma, Sang Hoon (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Hyun Min (School of Biological Sciences and Technology, Chonnam National University) ;
  • Joung, Young Hee (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University)
  • Received : 2019.05.20
  • Accepted : 2019.07.10
  • Published : 2019.12.28

Abstract

Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Keywords

References

  1. Guengerich FP. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14: 611-650. https://doi.org/10.1021/tx0002583
  2. Guengerich FP, Munro AW. 2013. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288: 17065-17073. https://doi.org/10.1074/jbc.R113.462275
  3. Guengerich FP. 2008. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 21: 70-83. https://doi.org/10.1021/tx700079z
  4. Tang W, Stearns RA. 2001. Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr. Drug Metab. 2: 185-198. https://doi.org/10.2174/1389200013338658
  5. Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK. 1996. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur. J. Biochem. 239: 403-409. https://doi.org/10.1111/j.1432-1033.1996.0403u.x
  6. Yun CH, Kim KH, Kim DH, Jung HC, Pan JG. 2007. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends Biotechnol. 25: 289-298. https://doi.org/10.1016/j.tibtech.2007.05.003
  7. Kang JY, Ryu SH, Park SH, Cha GS, Kim DH, Kim KH, et al. 2014. Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs. Biotechnol. Bioeng. 111: 1313-1322. https://doi.org/10.1002/bit.25202
  8. Lussenburg BMA, Babel LC, Vermeulen NPE, Commandeur JNM. 2005. Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants. Anal. Biochem. 341: 148-155. https://doi.org/10.1016/j.ab.2005.02.025
  9. Xu Z, Jing K, Liu Y, Cen P. 2007. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J. Ind. Microbiol. Biotechnol. 34: 83-90. https://doi.org/10.1007/s10295-006-0168-2
  10. Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regenerationan important aspect of biocatalysis. Curr. Sci. 106: 946-957.
  11. Kruger NJ, von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol. 6: 236-246. https://doi.org/10.1016/S1369-5266(03)00039-6
  12. Schnarrenber C, Oeser A, Tolbert NE. 1973. Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch. Biochem. Biophys. 154: 438-448. https://doi.org/10.1016/0003-9861(73)90077-5
  13. von Schaewen A, Langenkamper G, Graeve K, Wenderoth I, Scheibe R. 1995. Molecular characterization of the plastidic glucose- 6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart. Plant Physiol. 109: 1327-1335. https://doi.org/10.1104/pp.109.4.1327
  14. Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupianez JA, et al. 1998. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J. 330(Pt 2): 777-784. https://doi.org/10.1042/bj3300777
  15. Wakao S, Benning C. 2005. Genome-wide analysis of glucose-6- phosphate dehydrogenases in Arabidopsis. Plant J. 41: 243-256. https://doi.org/10.1111/j.1365-313X.2004.02293.x
  16. Esposito S, Carfagna S, Massaro G, Vona V, Di Martino Rigano V. 2001. Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localisation of the isoforms. Planta 212: 627-634. https://doi.org/10.1007/s004250000443
  17. Graeve K, von Schaewen A, Scheibe R. 1994. Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J. 5: 353-361. https://doi.org/10.1111/j.1365-313X.1994.00353.x
  18. Castiglia D, Cardi M, Landi S, Cafasso D, Esposito S. 2015. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots. Protein Expr. Purif. 112: 8-14. https://doi.org/10.1016/j.pep.2015.03.016
  19. Cardi M, Chibani K, Castiglia D, Cafasso D, Pizzo E, Rouhier N, et al. 2013. Overexpression, purification and enzymatic characterization of a recombinant plastidial glucose-6-phosphate dehydrogenase from barley (Hordeum vulgare cv. Nure) roots. Plant Physiol. Biochem. 73: 266-273. https://doi.org/10.1016/j.plaphy.2013.10.008
  20. Yang Y, Fu Z, Su Y, Zhang X, Li G, Guo J, et al. 2014. A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Sci. Rep. 4: 7090. https://doi.org/10.1038/srep07090
  21. Cardi M, Castiglia D, Ferrara M, Guerriero G, Chiurazzi M, Esposito S. 2015. The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. Plant Physiol. Biochem. 86: 44-54. https://doi.org/10.1016/j.plaphy.2014.11.001
  22. Liu J, Wang X, Hu Y, Hu W, Bi Y. 2013. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. Plant Cell Rep. 32: 415-429. https://doi.org/10.1007/s00299-012-1374-1
  23. Wang H, Yang L, Li Y, Hou J, Huang J, Liang W. 2016. Involvement of ABA- and $H_2O_2$-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. Plant Physiol. Biochem. 107: 126-136. https://doi.org/10.1016/j.plaphy.2016.05.040
  24. Landi S, Nurcato R, De Lillo A, Lentini M, Grillo S, Esposito S. 2016. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought. Plant Physiol. Biochem. 105: 79-89. https://doi.org/10.1016/j.plaphy.2016.04.013
  25. Kim DH, Kim KH, Kim DH, Liu KH, Jung HC, Pan JG, et al. 2008. Generation of human metabolites of 7-ethoxycoumarin by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 36: 2166-2170. https://doi.org/10.1124/dmd.108.021220
  26. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. II. solubilization, purification, and properties. J. Biol. Chem. 239: 2379-2385. https://doi.org/10.1016/S0021-9258(20)82245-5
  27. Ryu SH, Park BY, Kim SY, Park SH, Jung HJ, Park M, et al. 2014. Regioselective hydroxylation of omeprazole enantiomers by bacterial CYP102A1 mutants. Drug Metab. Dispos. 42: 1493-1497. https://doi.org/10.1124/dmd.114.058636
  28. Vottero E, Rea V, Lastdrager J, Honing M, Vermeulen NP, Commandeur JN. 2011. Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J. Biol. Inorg. Chem. 16: 899-912. https://doi.org/10.1007/s00775-011-0789-4
  29. NCBI. Available from https://www.ncbi.nlm.nih.gov. Accessed May 8, 2019.
  30. UniProtKB. Available from https://www.uniprot.org/. Accessed May 8, 2019.
  31. Multiple Sequence Alignment by CLUSTALW. Available from https://www.genome.jp/tools-bin/clustalw. Accessed May 8, 2019.
  32. Basic Local Alignment Search Tool. Available from https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed May 8, 2019.
  33. Translate Tool. Available from https://web.expasy.org/translate/. Accessed May 8, 2019.
  34. ProtParam tool. Available from https://web.expasy.org/protparam/. Accessed May 8, 2019.
  35. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. http://www.mbio.ncsu.edu/BioEdit/bioedit.html. Accessed May 8, 2019.
  36. Schadt S, Bister B, Chowdhury SK, Funk C, Hop CECA, Humphreys WG, et al. 2018. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance. Drug Metab. Dispos. 46: 865-878. https://doi.org/10.1124/dmd.117.079848
  37. Furge LL, Guengerich FP. 2006. Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem. Mol. Biol. Educ. 34: 66-74. https://doi.org/10.1002/bmb.2006.49403402066
  38. Urlacher VB, Eiben S. 2006. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol. 24: 324-330. https://doi.org/10.1016/j.tibtech.2006.05.002
  39. Schewe H, Kaup BA, Schrader J. 2008. Improvement of P450 (BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl. Microbiol. Biotechnol. 78: 55-65. https://doi.org/10.1007/s00253-007-1277-1
  40. Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, et al. 2012. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl. Microbiol. Biotechnol. 95: 357-367. https://doi.org/10.1007/s00253-012-4039-7
  41. Cirino PC, Arnold FH. 2003. A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew. Chem. Int. Ed. Engl. 42: 3299-3301. https://doi.org/10.1002/anie.200351434
  42. Fantuzzi A, Fairhead M, Gilardi G. 2004. Direct electrochemistry of immobilized human cytochrome P450 2E1. J. Am. Chem. Soc. 126: 5040-5041. https://doi.org/10.1021/ja049855s
  43. Bian M, Li S, Wei H, Huang S, Zhou F, Zhu Y, et al. 2018. Heteroexpression and biochemical characterization of a glucose-6-phosphate dehydrogenase from oleaginous yeast Yarrowia lipolytica. Protein Expr. Purif. 148: 1-8. https://doi.org/10.1016/j.pep.2018.03.007
  44. Levy HR, Daouk GH. 1979. Simultaneous analysis of NAD- and NADP-linked activities of dual nucleotide-specific dehydrogenases. Application to Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase. J. Biol. Chem. 254: 4843-4847. https://doi.org/10.1016/S0021-9258(17)30089-3
  45. Adediran SA, Gbadegesin MR. 1995. Kinetics of the reaction of baker's yeast glucose-6-phosphate dehydrogenase with 5, 5'-dithiobis (2-nitrobenzoic acid). Arch. Biochem. Biophys. 322: 39-42. https://doi.org/10.1006/abbi.1995.1433
  46. Cave CRJ, Cockshull KE, Adams SR. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88: 869-877. https://doi.org/10.1006/anbo.2001.1524
  47. Demoss RD, Gunsalus IC, Bard RC. 1953. A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J. Bacteriol. 66: 10-16. https://doi.org/10.1128/jb.66.1.10-16.1953
  48. Glaser L, Brown DH. 1955. Purification and properties of d-glucose- 6-phosphate dehydrogenase. J. Biol. Chem. 216: 67-79. https://doi.org/10.1016/S0021-9258(19)52284-0
  49. Jeon H, Durairaj P, Lee D, Ahsan MM, Yun H. 2016. Improved NADPH regeneration for fungal cytochrome P450 monooxygenase by co-expressing bacterial glucose dehydrogenase in restingcell biotransformation of recombinant yeast. J. Microbiol. Biotechnol. 26: 2076-2086. https://doi.org/10.4014/jmb.1605.05090
  50. Gnanasekaran T, Vavitsas K, Andersen-Ranberg J, Nielsen AZ, Olsen CE, Hamberger B, et al. 2015. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme. J. Biol. Eng. 9: 24-24. https://doi.org/10.1186/s13036-015-0022-z
  51. Sheludko YV, Gerasymenko IM, Warzecha H. 2018. Transient expression of human cytochrome P450s 2D6 and 3A4 in Nicotiana benthamiana provides a Possibility for Rapid Substrate Testing and Production of novel compounds. Biotechnol. J. 13: e1700696.