Responses in Hepatic Xenobiotic Metabolizing and Antioxidant Enzymes in Javelin Goby Acanthogobius hasta Collected at Shihwa Lake

시화호에서 채집한 풀망둑 Acanthogobius hasta의 간장 약물대사효소계 및 항산화계의 반응

  • 이지선 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터) ;
  • 정지현 (동의대학교 생명과학부) ;
  • 한창희 (한국해양연구원 남해연구소) ;
  • 심원준 (동의대학교 생명과학부) ;
  • 전중균 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터)
  • Published : 2008.05.31

Abstract

The aim of this study was to assess the responses of mixed function oxygenase (MFO) and antioxidative systems of feral Javelin goby, Acanthogobius hasta, caught in two sites of different pollution level in Shihwa lake, which has been a highly polluted lake by organic pollutants from nearby industrial complexes and sites. Enzymes analyzed in phase I of MFO system are cytochrome P450 (CYP), NADPH-cytochrome P450 reductase (P450R), NADH-cytochrome b5 reductase (b5R), and ethoxyresorufin deethylase (EROD). Phase II enzyme of glutathione S-transferase (GST) in MFO system was also investigated. Moreover, oxidative-enzyme system including catalase (CAT), glutathione reductase (GR) and total-glutathione peroxidase (GPX) activities and glutathione concentration in both of oxidized (GSSG) and reduced form (GSH) were determined. P450R, b5R, and GST activities of fish are relatively high in the polluted area, whereas hepatic EROD activity levels of fish in polluted area were lower than those of unpolluted area. CYP concentrations are not different between areas. These results indicated that feral Acanthogobius hasta were adaptive to highly polluted environment and exposed to oxidative stress in Shihwa lake.

공장 폐수로 인한 오염이 심한 경기 시화호에서 오염정도가 다른 두 지역으로부터 풀망둑을 채집하여 이들의 해독효소계 또는 항산화효소계의 반응을 비교하였다. 해독효소계에서 I상효소로는 CYP, P450R, b5R, EROD를, II상효소로는 GST를 조사하였다. 그리고 항산화효소계로는 CAT, GR, CPx의 활성 그리고 GSH및 CSSG농도를 조사하였다. 그 결과, 오염정도가 심한 지역에서 잡은 어류가 간장 중 P450R, b5R, GST의 활성이 높았으나 EROD활성은 오히려 낮았고 CYP농도는 차이가 없었다. 그리고 이지역에서 잡은 어류는 CAT와 GR의 활성, 비효소적인 항산화계인 CSH와 GSSC농도도 더 높았으나 GTx활성은 오히려 낮았다. 이들 결과는 시화호의 오염된 곳에서 서식하는 풀망둑 Acanthogobius hasta은 상당히 해독효소계가 항진되어 있으며 산화 스트레스도 크게 받고 있음을 보여준다.

Keywords

References

  1. 김종구, 김준우, 조은일. 2002. 시화호의 배수갑문 운용에 따 른 수질변화. 한국환경과학회지. 11:1205-1215
  2. 김종국, 김형섭, 김경심, 이동수. 2005. 시화호 중 다환방향족 탄화수소(PAHs)의 농도와 매질별 분배 특성. 대한환경공학회지. 27:690-696
  3. 류종성, 최진우, 강성길, 고철환, 허성회. 1997. 시화 방조제 건설 이후 시화호 다모류의 종조성 및 서식밀도 변화. 한국해양학회지. 2:101-109
  4. 이태원, 문형태, 허성회. 1997. 시화호 수질 악화에 따른 시 화호와 주변 해역 어류의 종조성 변화. 한국해양학회지. 2:110-116
  5. 최정훈, 강정원, 홍대벽, 박용안. 2000. 시화호 퇴적물의 유기 탄소, 유기질소 및 중금속 함량과 분포. 한국해양학회지. 5: 276-284
  6. 최정훈, 김미옥. 2001. 시화호 배수갑문 운용에 따른 용존산 소와 pH 변화. 한국지구과학회지. 22:195-207
  7. 한국해양연구원. 2001. 전국 연안의 지속성 유기오염물질 오염실태 조사연구. BSPM. 00070-00-1336-3. 529pp
  8. 현상민, 천종화, 이희일. 1999. 시화호의 퇴적환경과 중금속 오염. 한국해양학회지. 4:198-207
  9. 홍혁기, 박종민, 김동훈, 임흥빈. 2005. 시화호 표층퇴적물의 중금속 분석. 한국환경분석학회지 8:1-6
  10. 谷口直之. 2001. SODとNOおよびグルタチオン代謝のクロ スト一クによるレドックス制御. pp.1-11. 酸化ストレ ス∙レドックスの生化學(谷口直之, 淀井淳司編). 共立 出版, 東京
  11. Ahmad I, M Pacheco and MA Santos. 2004. Enzymatic and nonenzymatic antioxidants as an adaptation to phagocyteinduced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol. Environ. Safe. 290-302
  12. Aksnes A and LR Njaa. 1981. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 69B:893-896
  13. Bainy ACD, E Saito, PSM, Carvello and VBC Junqueria. 1996. Oxidative stress in gill and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat. Toxicol. 34:151-162 https://doi.org/10.1016/0166-445X(95)00036-4
  14. Beutler E. 1975. Red Cell Metabolism: A Manual of Biochemical Methods. Grune and Stratton, New York
  15. Buhler DR and DE Williams. 1988. The role of biotransformation in the toxicity of chemicals. Aquat. Toxicol. 11:19- 28 https://doi.org/10.1016/0166-445X(88)90004-5
  16. Burke MD and RT Mayer. 1974. Ethoxyresorufin: direct fluorometric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab. Disp. 2:583-588
  17. Carlberg I and B Mannervik. 1975. Purification and characterization of the flavo enzyme glutathione reductase from rat liver. J. Biol. Chem. 250:5475-5480
  18. Calibone A. 1985. Catalase activity. pp. 283-284. In CRC Handbrook of Methods in Oxygen Radical Research (Greenwald, RA ed.). CRC Press, Boca Raton
  19. DiGiulio RT, C Habig and EP Gallagher. 1993. Effects of black river harbour sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquat. Toxicol. 26:1-2 https://doi.org/10.1016/0166-445X(93)90002-I
  20. Estabrook RW. 1982. Modifiers and the mechanisms of cytochrome P450 function. pp. 133-138 In Microsomes, Drug Oxidations, and Drug Toxicity (Sato R ed.). Tokyo Japan Scientific Societies Press, Tokyo
  21. Fatima M, I Ahmad, I Sayeed, M Athar and S Raisuddin. 2000. Pollutant-induced overactivation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat. Toxicol. 49:243-250 https://doi.org/10.1016/S0166-445X(99)00086-7
  22. Fent K and TD Bucheli. 1994. Inhibition of hepatic microsomal monooxygenase system by organotins in vitro in freshwater fish. Aquat. Toxicol. 28:107-126 https://doi.org/10.1016/0166-445X(94)90024-8
  23. Fent K and JJ Stegeman. 1991. Effects of tributyltin chloride in vitro on the hepatic microsomal monooxygenase system in the fish Stenotomus chrysops. Aquat. Toxicol. 20:159-168 https://doi.org/10.1016/0166-445X(91)90014-Z
  24. Freeman, B and JD Crapo. 1982. Biology of disease. Free radicals and tissue injury. Lab. Invest. 47: 412-425
  25. Girotti AW. 1990. Photodynamic lipid peroxidation in biological system. Photochem. Photobiol. 51:497-509 https://doi.org/10.1111/j.1751-1097.1990.tb01744.x
  26. Goksoyr A and L Forlin. 1992. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxicol. 22:287-312 https://doi.org/10.1016/0166-445X(92)90046-P
  27. Habig WH, MJ Pabst and WB Jakoby. 1974. Glutatione S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139
  28. Halliwell B. 1987. Oxidants and human disease: some new concepts. FASEB J. 1:358-364 https://doi.org/10.1096/fasebj.1.5.2824268
  29. Kappus H. 1987. Oxidative stress in chemical toxicity. Arch. Toxicol. 60:144-149 https://doi.org/10.1007/BF00296968
  30. Karuzina II and AI Archakov. 1994. The oxidative inactivation of cytochrome P450 in monooxygenase reactions. Free Rad. Biol. Med. 16:73-97 https://doi.org/10.1016/0891-5849(94)90245-3
  31. Kime DE. 1998. Endocrine Disruption in Fish. Kluwer Academic Publishers, Boston
  32. Lawrence RA and RF Burk. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Comm. 76:952-958
  33. Lemaire P, L Förlin and DR Livingstone. 1996. Responses of hepatic biotransformation and antioxidant enzymes to CYP1A-inducers (3-methylchloranthrene, ${\beta}$-naphthoflavone) in sea bass (Dicentrachus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 36:141-160 https://doi.org/10.1016/S0166-445X(96)00819-3
  34. Lenartova V, K Holovska, JR Pedrajas, E Martinez-Lara, J Peinado, J Lopez-Barea, I Rosival and P Kosuth. 1997. Antioxidant and detoxifying fish enzymes as biomarkers of river pollution. Biomarkers 2:247-252 https://doi.org/10.1080/135475097231625
  35. Livingstone DR. 1991 Organic xenobiotic metabolism in marine invertebrates. pp.45-185. In Advances in Comparative and Environmental Physiology (Gilles R ed.). Springer, Berlin
  36. Livingstone DR. 1998. The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp. Biochem. Physiol. 120A:43-49
  37. Lowry OH, NJ Roseborough, LA Farr and RJ Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275
  38. Omura T and R Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239:2370-2378
  39. Omura T and S Takesue. 1970. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J. Biochem. 67:249-257 https://doi.org/10.1093/oxfordjournals.jbchem.a129248
  40. Philips AH and RG Langdon. 1962. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J. Biol. Chem. 237:2652-2660
  41. Sayeed I, S Parvez, S Pandey, B Bin-Hafeez, R Haque and S Raisuddun. 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf. 56:295-301 https://doi.org/10.1016/S0147-6513(03)00009-5
  42. Schlezinger JJ, WDJ Struntz, JV Goldstone and JJ Stegeman. 2006. Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat. Toxicol. 77:422-432 https://doi.org/10.1016/j.aquatox.2006.01.012
  43. Stadtman ER. 1991. Ascorbic acid and oxidative inactivation of proteins. Am. J. Clin. Nutr. 54:1125-1128 https://doi.org/10.1093/ajcn/54.6.1125s
  44. Stephensen E, J Sturve and L Förlin. 2002. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp. Biochem. Physiol. 133C:435-442
  45. Winston GW and RT DiGiulio, 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19:137-161 https://doi.org/10.1016/0166-445X(91)90033-6