• Title/Summary/Keyword: CYP2R1

Search Result 91, Processing Time 0.028 seconds

Cross Resistance of Cypermethrin-and Methomyl-Resistance and Linkage Group Analysis on Cypermethrin Resistance in House Fly(Musca domestica L.) (Cypermethrin과 Methomyl 저항성 집파리의 교처저항성과 Cypermethrin 저항성에 대한 연관군 분석)

  • Yoo, Ju;Park, Chung-Gyoo;Lee, Si-Woo;Choi, Byeong-Ryeol
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.337-344
    • /
    • 2001
  • The house fly (Musca domestica L.) strains were derived from the Yumenoshima III strain by selecting with cypermethrin and methomyl for 19 and 16 generations, respectively. The resulting strains, cypermethrin resistance strain (Cyp-R19) and methomyl resistance strain (Met-R16), showed high level of resistance by 12906 and 51 times, respectively, comparing with the susceptible SRS strain. The Cyp-R19 strain was resistant to synthetic pyrethroids such as deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin, showing > 11000, 1231, 103, 292 times higher $LD_{50}$ values than the SRS strain, respectively. It was also resistant to 3 organophosphates and 2 carbamates such as fenitrothion, profenofos, pyridaphenthion, benfuracarb, methomyl, showing resistance ratios fo 51, 17, 49, 39 and 62 comparing to SRS strain. The Met-R16 strain was resistant to synthetic carbamate benfuracarb, showing 6 times higher $LD_{50}$ value than SRS strain. It was also resistant to 4 organophosphates such as acephate, fenitrothion, profenofos and pyridaphenthion, showing > 40, 103, 19, 60 times higher $LD_{50}$ value. It was also resistant to 5 pyrethroids and a pyrrole such as cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin and chlorfenapyr, showing 3030, 249, 4063, 34, 330 and 86 times higher $LD_{50}$ values than the SRS strain. Cyp-R14 strain which was selected for 14 generations by cypermethrin and developed 11014 times higher resistance to the SRS strain was used in the dominance and linkage group analysis. Cypermethrin resistance inheritance was incompletely dominant in house fly as judged by the reciprocal cross between the resistant and susceptible strains. The linkage group analysis for the major factors responsible for this resistance was carried out by the$ F_1$male-backcross method, using susceptible multi-chromosomal marker aabys strain. The major factors for cypermethrin resistance were located on the 1st, the 3rd and the 4th chromosomes, and the effect of the 3rd chromosome was most prominent.

  • PDF

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats

  • Choi, Sang-Joon;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.469-476
    • /
    • 2010
  • This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

Metabolic Activation of Marijuana Constituents, Cannabinoids, in Relation to Their Toxicity for Human and Its Oxidation Mechanism

  • Ikuo, Yamamoto
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.194-199
    • /
    • 2002
  • Many oxidative metabolites of tetrahydrocannabinols (THCs), active components of marijuana, were pharmacologically active, and 11-hydroxy-THCs, 11-oxo-${\Delta}^8$-THC, 7-oxo-${\Delta}^8$-THC, 8$\beta$, 9$\beta$-epoxyhexahydrocannabinol (EHHC), 9$\alpha$, l0$\alpha$-EHHC and 3'-hydroxy-${\Delta}^9$-THC were more active than THC in pharmacological effects such as catalepsy, hypothermia and barbiturate synergism in mice. Cannabidiol (CBD), another major component, was biotransfomred to two novel metabolites, 6-hydroxymethyl-${\Delta}^9$-THC and 3-pentyl-6, 7, 7a, 8, 9, lla-hexahydro-I, 7-dihydroxy-7, 1O-dimethyldibenzo[b, d]oxepin (PHDO) through 8R, 9-epoxy-CBD and 85, 9-epoxy-CBD, respectively. Both metabolites exhibited some pharmacological effects comparable to d9 - THe. Cannabinol (CBN), the other major component, was mainly metabolized to ll-hydroxy-CBN by hepatic microsomes of animals including humans. The pharmacological effects of the metabolite were higher than those of CBN demonstrating that II-hydroxylation of CBN is metabolic activation pathway of the cannabinoid as is the case in THCs. Tolerance and reciprocal cross-tolerance developed to pharmacological effects d8 - THC and ll-hydroxy-d8-THC , and the magnitude of tolerance development produced by the metabolite was significantly higher than that by d8-THC. The results indicate that ll-hydroxy-d8-THC has an important role not only in the pharmacological effects but also its tolerance development of d8 - THe. THCs and their metabolites competed to the specific binding of CP-55, 940, an agonist of cannabinoid receptor, to synaptic membrane from bovine cerebral cortex. The Ki value of THCs and their metabolites were closely paralleled to their pharmacological effects in mice. A novel cytochrome P450 (cyp2c29) was purified and identified as a major enzyme responsible for the metabolic activation of d8-THC at the II-position in the mouse liver. cDNA of CYP2C29 was cloned from a mouse cDNA library and its sequence was determined. The oxidation mechanism of THC by cyp2c29 was proposed.

  • PDF

Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk (누룩곰팡이 분리균의 다양성 및 당화능 분석과 독소생산능 조사)

  • Kim, Min Sik;Kim, Sinil;Ha, Byeong-Seok;Park, Hye-Young;BaeK, Seong-Yeol;Yeo, Soo-Hwan;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Nuruk samples collected from various regions in Korea were investigated in terms of fungal contents and diversity. In measurement of colony forming unit (CFU) in Nuruk suspensions on DRBC agar, Nuruk samples MS4, MS8, and MS10 were among the highest fungal density, with $1,278.9{\pm}21.6$ (${\times}10^4$), $1,868.0{\pm}27.7$ (${\times}10^4$), and $775.1{\pm}19.2$ (${\times}10^4$) were among the samples showing the highest fungal density. CFU per 20 mg Nuruk, respectively. The majority of fungal components were yeasts, including Pichia anomala, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomycopsis fibuligera, whereas Aspergillus oryzae and Rhizopus oryzae, the representative Nuruk fungi, were predominant only in the low fungal density Nuruks (MS2, MS5, and MS11). Saccharification capability of the fungal isolates was assessed by measurement of amylase activity in the culture broth. The highest amylase activity was found in A. niger and A. luchuensis, followed by S. fibuligera. A. oryzae and R. oryzae showed fair amylase activity but significantly lower than those of the three fungal species. R. oryzae was suggested to play an additional role in degradation of ${\beta}$-glucan in crop component of Nuruk since R. oryzae was the only fungus that showed ${\beta}$-glucanase activity among the fungal isolates. To confirm the safety of Nuruk, aflatoxigenicity of the isolated Aspergillus was estimated using the DNA markers norB-cypA, aflR, and omtA. All of the isolates turned out to be non-aflatoxigenic as evidenced by the deletion of gene markers, norB-cypA and aflR, and the absence of aflatoxin in the culture supernatants shown by TLC analysis.

Assessment of Flavin-containing Monooxygenase (FMO) Activity by Determining Urinary Ratio of Theobromine and Caffeine in a Korean Population after Drinking a Cup of Coffee

  • Chung, Woon-Gye;Kang, Ju-Hee;Roh, Hyung-Keun;Lee, Kyung-Hoon;Park, Chang-Shin;Cha, Young-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • To examine individual variation in drug metabolism catalyzed by flavin-containing monooxygenase (FMO), 179 Korean volunteers' urinary molar concentration ratio of theobromine (TB) and caffeine (CA) was determined. Their urine was collected for 1 hr (between 4 and 5 hrs) after they drank a cup of coffee containing 115 mg CA and analyzed by an HPLC system. The lowest TB/CA ratio obtained was 0.40, the highest ratio was 15.17 (38-fold difference), and the median ratio for all subjects was 1.87. The mean was 2.66 with 2.36 S.D.. In 134 nonsmokers, the mean ratio was $2.35{\pm}1.93,$ that of 51 males was $2.30{\pm}2.26$ and 83 females was $2.37{\pm}1.85,$ respectively. There was no significant gender difference in the obtained TB/CA ratio (Mann-Whitney test; p=0.518). There were no smokers among the 83 female volunteers. In the remaining 96 male subjects, the ratio obtained in 51 nonsmokers was $2.30{\pm}2.06$ and that of 45 smokers was $3.62{\pm}3.19.$ This indicated that the TB/CA ratio was increased significantly in smokers (p=0.007). However, when the TB/CA ratios (FMO activity) obtained in all 179 Korean volunteers are compared with the urinary concentration ratios of paraxanthine (PX) plus 1,7-dimethylurate (17U) to CA (CYP1A2 activity), there was a weak but significant correlation (Pearson's correlation coefficient test; $r^2=0.28,$ p<0.0001). This indicates that, although the urinary TB/CA ratio mostly represents FMO activity, minor contribution by CYP1A2 activity cannot be ignored. In conclusion, the FMO activity measured by taking the urinary TB/CA ratio from normal healthy Korean volunteers shows marked individual variations without significant gender differences and the increased TB/CA ratio observed in cigarette smokers may have been caused by the increased CYP1A2 activity.

  • PDF

Analysis of Nitrosation Inhibition and Antioxidant Effect by Phyto-Extract Mixture (식물추출 혼합제재인 phyto-extract mixture의 니트로세이션 억제능과 항산화능 분석)

  • Kim, Ji-Hoon;Shin, Mi-Jung;Cho, Hee-Jae;Lee, Sang-Won;Jeong, Jong-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.656-663
    • /
    • 2001
  • The most representative nitrosamine derived from nicotine, nitrosamine-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK), has been reported to cause lung cancer in A/J mice. It has been also demonstrated that NNK-induced lung tumorigenesis involves $O^6-methylguanine(O^6MeG)$ formation, leading to $GC\;{\rightarrow}\;AT$ transitional mispairing during DNA replication. Our in vitro experiment, modified from the method of DBA assay, examined the ability of phyto-extract mixture to inhibit the metabolism of nicotine to nitrosamines. The production of nitromorpholine from morpholine was inhibited about 75% at the concentration of 20 mg/mL of phyto-extract mixture, which was lower than vitamine C and green tea powder. NNK, which is a pro-carcinogen in laboratory animals, is hydroxylated primarily in liver and lung by CYP 1A2, 2A6 and 3A4. A critical phase. of NNK activation is its change to an unstable metabolite methyl-diazohydroxide via CYP-mediated ${\alpha}-hydroxylation$; and then it provides a methyl group to the DNA to form DNA adducts which can easily induce mutations. $Aroclor^R$ 1254 was used to induce CYPs in the liver of a Sprague-Dawley rat. The ability of various test samples to inhibit CYPs that participate in NNK activation was evaluated, following the removal of the liver from the rat. Microsomal CYPlA2 catalyzing the conversion of NNK into strong carcinogenic chemicals was inhibited more efficiently by phyto-extract mixture than green tea powder. These results indicate that phyto-extract mixture can be used to reduce $O^6MeG$ DNA adducts for chemoprevention.

  • PDF

ARYL HYDROCARBON- AND ESTROGEN-MEDIATED SIGNALS POSSIBLY CROSS TALK TO REGULATE CYP1A1 GENE EXPRESSION

  • Joung, Ki-Eun;Kim, Yeo-Woon;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.186-186
    • /
    • 2001
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways by enhancing ligand metabolism, altering hormone synthesis, down regulating receptor levels, and interfering with gene transcription. And TCDD-mediated gene transactivation via the AhR has been shown to be dependent upon estrogen receptor (ER) expression in human breast cancer cells.(omitted)

  • PDF