Assessment of Flavin-containing Monooxygenase (FMO) Activity by Determining Urinary Ratio of Theobromine and Caffeine in a Korean Population after Drinking a Cup of Coffee

  • Chung, Woon-Gye (Department of Pharmacology and Toxicology, Medicinal Toxicology Research Center, College of Medicine, Inha University) ;
  • Kang, Ju-Hee (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Roh, Hyung-Keun (Department of Internal Medicine, College of Medicine, Inha University) ;
  • Lee, Kyung-Hoon (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Park, Chang-Shin (Department of Pharmacology and Toxicology, College of Medicine, Inha University) ;
  • Cha, Young-Nam (Department of Pharmacology and Toxicology, Medicinal Toxicology Research Center, College of Medicine, Inha University)
  • Published : 1999.04.21

Abstract

To examine individual variation in drug metabolism catalyzed by flavin-containing monooxygenase (FMO), 179 Korean volunteers' urinary molar concentration ratio of theobromine (TB) and caffeine (CA) was determined. Their urine was collected for 1 hr (between 4 and 5 hrs) after they drank a cup of coffee containing 115 mg CA and analyzed by an HPLC system. The lowest TB/CA ratio obtained was 0.40, the highest ratio was 15.17 (38-fold difference), and the median ratio for all subjects was 1.87. The mean was 2.66 with 2.36 S.D.. In 134 nonsmokers, the mean ratio was $2.35{\pm}1.93,$ that of 51 males was $2.30{\pm}2.26$ and 83 females was $2.37{\pm}1.85,$ respectively. There was no significant gender difference in the obtained TB/CA ratio (Mann-Whitney test; p=0.518). There were no smokers among the 83 female volunteers. In the remaining 96 male subjects, the ratio obtained in 51 nonsmokers was $2.30{\pm}2.06$ and that of 45 smokers was $3.62{\pm}3.19.$ This indicated that the TB/CA ratio was increased significantly in smokers (p=0.007). However, when the TB/CA ratios (FMO activity) obtained in all 179 Korean volunteers are compared with the urinary concentration ratios of paraxanthine (PX) plus 1,7-dimethylurate (17U) to CA (CYP1A2 activity), there was a weak but significant correlation (Pearson's correlation coefficient test; $r^2=0.28,$ p<0.0001). This indicates that, although the urinary TB/CA ratio mostly represents FMO activity, minor contribution by CYP1A2 activity cannot be ignored. In conclusion, the FMO activity measured by taking the urinary TB/CA ratio from normal healthy Korean volunteers shows marked individual variations without significant gender differences and the increased TB/CA ratio observed in cigarette smokers may have been caused by the increased CYP1A2 activity.

Keywords