Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.4.469

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats  

Choi, Sang-Joon (College of Medicine, Chosun University)
Choi, Jun-Shik (College of Pharmacy, Chosun University)
Publication Information
Biomolecules & Therapeutics / v.18, no.4, 2010 , pp. 469-476 More about this Journal
Abstract
This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.
Keywords
Apigenin; Paclitaxal; Bioavailability; Pharmacokinetics; CYP3A4; P-gp; Rats;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Li, X. and Choi J. S. (2007). Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int. J. Pharm. 337, 188-193.   DOI
2 Meerum Terwogt, J. M., Malingre, M. M., Beijnen, J. H., ten Bokkel Huinink, W. W., Rosing, H., Koopman, F. J., van Tellingen, O., Swart, M. and Schellens, J. H. (1999). Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin. Cancer Res. 5, 3379-3384.
3 Nafisi, S., Hashemi, M. and Rajabi, M. (2008). DNA Adducts with Antioxidant Flavonoids: Morin, Apigenin, and Naringin. DNA and Cell Biology 27, 1-10.   DOI
4 Nguyen, H., Zhang, S. and Morris, M. E. (2003). Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci. 92, 250-257.   DOI
5 Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J. and Harris, J. W. (1994). Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 54, 5543-5546.
6 Rowinsky, E. K., Eisenhauer, E. A., Chaudhry, V., Arbuck, S. G. and Donehower, R. C. (1993).Clinical toxicities encountered with paclitaxel (Taxol). Semin. Oncol. 20, 1-15.
7 Sonnichsen, D. S., Liu, Q., Schuetz, E. G., Schuetz, J. D., Pappo, A. and Relling, M. V. (1995). Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp. Ther. 27, 566-575.
8 Galati, G., Moridani, M. Y., Chan, T. S. and O’brien, P. J. (2001). Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free. Radical. Biology & Medicine. 30, 370-382.   DOI
9 Gao, P., Rush, B. D., Pfund, W. P., Huang, T., Bauer, J. M., Morozowich, W., Kuo, M. S. and Hageman, M. J. (2003). Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J. Pharm. Sci. 92, 2386-2398.   DOI
10 Gates, M. A., Vitonis, A. F., Tworoger, S. S., Rosner, B., Titus-Ernstoff, L., Hankinson, S. E. and Cramer, D. W. (2009). Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int. J. Cancer. 124, 1918-1925.   DOI
11 Harris, J. W., Rahman, A., Kim, B. R., Guengerich, F. P. and Collins, J. M. (1994). Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 54, 4026-4035.
12 Ho, P. C., Saville, D. J. and Wanwimolruk, S. (2001). Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J. Pharm. Pharm. Sci. 4, 217-227.
13 Jeong, G. S., Lee, S. H., Jeong, S. N., Kim, Y. C. and Kim, E. C. (2009). Anti-inflammatory effects of apigenin on nicotineand lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int. Immunopharmacol. 9, 1374-1380.   DOI
14 Kelly, P. A., Wang, H., Napoli, K. L., Kahan, B. D. and Strobel, H. W. (1999). Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug. Metab. Pharmacokinet. 24, 321-328.   DOI
15 Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. (2010). Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food. Chem. Toxicol. 48, 429-435.   DOI
16 Choi, J. S. and Li, X. (2005). The effect of verapamil on the pharmacokinetics of paclitaxel in rats. Eur. J. Pharm. Sci. 24, 95-100.   DOI
17 Choi, J. S. and Shin, S. C. (2005). Enhanced paclitaxel bioavailability after oral coadministration of paclitaxel prodrug with naringin to rat. Int. J. Pharm. 292, 149-156.   DOI
18 Crespi, C. L., Miller, V. P. and Penman, B. W. (1997). Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190.   DOI
19 Choi, S. U., Lee, B. H., Kim, K. H., Choi, E. J., Park, S. H., Shin, H. S., Yoo, S. E., Jung, N. P. and Lee, C. O. (1997). Novel multidrug-resistance modulators, KR-30026 and KR-30031, in cancer cells. Anticancer. Res. 17, 4577-4582.
20 Chuang, C. M., Monie, A., Wu, A. and Hung, C. F. (2009). Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J. Biomed. Sci. 27, 49-60.
21 Critchfield, J. W., Welsh, C. J., Phang, J. M. and Yeh, G. C. (1994). Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 48, 1437-1445.   DOI
22 Cummins, C. L., Jacobsen, W. and Benet, L. Z. (2002). Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300, 1036-1045.   DOI
23 Dixon, R. A. and Steele, C. L. (1999). Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends. Plant Sci. 4, 394-400.   DOI
24 Fukuda, K., Ohta, T., Oshima, Y., Ohashi, N., Yoshikawa, M. and Yamazoe, Y. (1997). Specific CYP3A4 inhibitors in grapefruit juice: furocoumarin dimers as components of drug interaction. Pharmacogenetics. 7, 391-396.   DOI
25 Choi, B. C., Choi, J. S. and Han, H. K. (2006). Altered pharmacokinetics of paclitaxel by the concomitant use of morin in rat. Int. J. Pharm. 323, 81-85.   DOI
26 Andreeva, M., Niedmann, P. D., Binder, L., Armstrong, V. W., Meden, H., Binder, M. and Oellerich, M. (1997). A simple and reliable reverse-phase high-performance liquid chromatographic procedure for determination of paclitaxel (taxol) in human serum. Ther. Drug. Monit. 19, 327-332.   DOI
27 Berg, S. L., Tolcher, A., O’Shaughnessy, J. A., Denicoff, A. M., Noone, M., Ognibene, F. P., Cowan, K. H. and Balis, F. M. (1995). Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J. Clin. Oncol. 13, 2039-2042.   DOI
28 Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. (2006). Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686.   DOI
29 Choi, J. S., Kim, Y. C. and Jo, B. W. (2004). Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. Eur. J. Pharm. Biopharm. 57, 313-318.   DOI
30 Sparreboom, A., van Asperen, J., Mayer, U., Schinkel, A. H., Smit, J. W., Meijer, D. K., Borst, P., Nooijen, W. J., Beijnen, J. H. and van Tellingen, O. (1997). Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA. 4, 2031-2035.
31 van Asperen, J., van Tellingen, O., van der Valk, M. A., Rozenhart, M. and Beijnen, J. H. (1998). Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporine A. Clin. Cancer Res. 4, 2293-2297.
32 Yin, Y., Gong, F. Y., Wu, X. X., Sun, Y., Li, Y. H., Chen, T. and Xu, Q. (2008). Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol. 120, 1-6.   DOI
33 Walle, T., Walle, U. K., Kuma, G. N. and Bhalla, K. N. (1995). Taxol metabolism and disposition in cancer patients. Drug Metab. Disp. 23, 506-512.
34 Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. and McPhail, A. T. (1971). Plant antitumor agnets. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327.   DOI
35 Woo, J. S., Lee, C. H., Shim, C. K. and Hwang, S. J. (2003). Enhanced oral bioavailability of paclitaxel by coadministration of the P-gp inhibitor KR30031. Pharm. Res. 20, 24-30.   DOI
36 Lee, S. H., Yoo, S. D. and Lee, K. H. (1999). Rapid and sensitive determination of paclitaxel in mouse plasma by high-performance liquid chromatography. J. Chomatogr. B. Biomed. Sci. 724, 357-363.   DOI
37 Lewis, D. F. V. (1996). Cytochrome P450. Substrate specificity and metabolism. In Cytochromes P450. Structure, Function, and Mechanism (D. F. V. Lewis, Ed.), pp. 122-123. Taylor & Francis, Bristol.