• 제목/요약/키워드: CYP17A1

검색결과 68건 처리시간 0.032초

Assessment of Flavin-containing Monooxygenase (FMO) Activity by Determining Urinary Ratio of Theobromine and Caffeine in a Korean Population after Drinking a Cup of Coffee

  • Chung, Woon-Gye;Kang, Ju-Hee;Roh, Hyung-Keun;Lee, Kyung-Hoon;Park, Chang-Shin;Cha, Young-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.207-213
    • /
    • 1999
  • To examine individual variation in drug metabolism catalyzed by flavin-containing monooxygenase (FMO), 179 Korean volunteers' urinary molar concentration ratio of theobromine (TB) and caffeine (CA) was determined. Their urine was collected for 1 hr (between 4 and 5 hrs) after they drank a cup of coffee containing 115 mg CA and analyzed by an HPLC system. The lowest TB/CA ratio obtained was 0.40, the highest ratio was 15.17 (38-fold difference), and the median ratio for all subjects was 1.87. The mean was 2.66 with 2.36 S.D.. In 134 nonsmokers, the mean ratio was $2.35{\pm}1.93,$ that of 51 males was $2.30{\pm}2.26$ and 83 females was $2.37{\pm}1.85,$ respectively. There was no significant gender difference in the obtained TB/CA ratio (Mann-Whitney test; p=0.518). There were no smokers among the 83 female volunteers. In the remaining 96 male subjects, the ratio obtained in 51 nonsmokers was $2.30{\pm}2.06$ and that of 45 smokers was $3.62{\pm}3.19.$ This indicated that the TB/CA ratio was increased significantly in smokers (p=0.007). However, when the TB/CA ratios (FMO activity) obtained in all 179 Korean volunteers are compared with the urinary concentration ratios of paraxanthine (PX) plus 1,7-dimethylurate (17U) to CA (CYP1A2 activity), there was a weak but significant correlation (Pearson's correlation coefficient test; $r^2=0.28,$ p<0.0001). This indicates that, although the urinary TB/CA ratio mostly represents FMO activity, minor contribution by CYP1A2 activity cannot be ignored. In conclusion, the FMO activity measured by taking the urinary TB/CA ratio from normal healthy Korean volunteers shows marked individual variations without significant gender differences and the increased TB/CA ratio observed in cigarette smokers may have been caused by the increased CYP1A2 activity.

  • PDF

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone

  • Lee, Su-Yeon;Kang, Youn-Jung;Kwon, Jinie;Nishi, Yoshihiro;Yanase, Toshihiko;Lee, Kyung-Ah;Koong, Mi Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권3호
    • /
    • pp.194-206
    • /
    • 2020
  • Objective: The aim of this study was to investigate microRNAs (miRNAs) related to follicle-stimulating hormone (FSH) responsiveness using miRNA microarrays and to identify their target genes to determine the molecular regulatory pathways involved in FSH signaling in KGN cells. Methods: To change the cellular responsiveness to FSH, KGN cells were treated with FSH receptor (FSHR)-specific small interfering RNA (siRNA) followed by FSH. miRNA expression profiles were determined through miRNA microarray analysis. Potential target genes of selected miRNAs were predicted using bioinformatics tools, and their regulatory function was confirmed in KGN cells. Results: We found that six miRNAs (miR-1261, miR-130a-3p, miR-329-3p, miR-185-5p, miR-144-5p and miR-4463) were differentially expressed after FSHR siRNA treatment in KGN cells. Through a bioinformatics analysis, we showed that these miRNAs were predicted to regulate a large number of genes, which we narrowed down to cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and estrogen receptor alpha (ESR1) as the main targets for miR-4463. Functional analysis revealed that miR-4463 is a regulatory factor for aromatase expression and function in KGN cells. Conclusion: In this study, we identified differentially expressed miRNAs related to FSH responsiveness. In particular, upregulation of miR-4463 expression by FSHR deficiency in human granulosa cells impaired 17β-estradiol synthesis by targeting CYP19A1 and ESR1. Therefore, our data might provide novel candidates for molecular biomarkers for use in research into poor responders.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells (HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, Hye-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제40권6호
    • /
    • pp.767-774
    • /
    • 2011
  • Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

A case of 17 alpha-hydroxylase deficiency

  • Kim, Sung Mee;Rhee, Jeong Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제42권2호
    • /
    • pp.72-76
    • /
    • 2015
  • $17{\alpha}$-hydroxylase and 17,20-lyase are enzymes encoded by the CYP17A1 gene and are required for the synthesis of sex steroids and cortisol. In $17{\alpha}$-hydroxylase deficiency, there are low blood levels of estrogens, androgens, and cortisol, and resultant compensatory increases in adrenocorticotrophic hormone that stimulate the production of 11-deoxycorticosterone and corticosterone. In turn, the excessive levels of mineralocorticoids lead to volume expansion and hypertension. Females with $17{\alpha}$-hydroxylase deficiency are characterized by primary amenorrhea and delayed puberty, with accompanying hypertension. Affected males usually have female external genitalia, a blind vagina, and intra-abdominal testes. The treatment of this disorder is centered on glucocorticoid and sex steroid replacement. In patients with $17{\alpha}$-hydroxylase deficiency who are being raised as females, estrogen should be supplemented, while genetically female patients with a uterus should also receive progesterone supplementation. Here, we report a case of a 21-year-old female with $17{\alpha}$-hydroxylase deficiency who had received inadequate treatment for a prolonged period of time. We also include a brief review of the recent literature on this disorder.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • 제5권2호
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

Association of Benign Prostate Hyperplasia with Polymorphisms in VDR, CYP17, and SRD5A2 Genes among Lebanese Men

  • El Ezzi, Asmahan Ali;Zaidan, Wissam Rateeb;El-Saidi, Mohammed Ahmed;Al-Ahmadieh, Nabil;Mortenson, Jeffrey Benjamin;Kuddus, Ruhul Haque
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1255-1262
    • /
    • 2014
  • Background: The aim of the study was to investigate any associations between benign prostate hyperplasia (BPH) and single nucleotide polymorphisms (SNPs) in the VDR gene (FokI, BsmI, ApaI and Taq${\alpha}$I loci) and the CYP17 gene (MspA1I locus), as well as TA repeat polymorphism in SRD5A2 gene among Lebanese men. Materials and Methods: DNA extracted from blood of 68 subjects with confirmed BPH and 79 age-matched controls was subjected to PCR/PCR-restriction fragment length polymorphism analysis. The odds ra=tio (OR) of having a genotype and the relative risk (RR) of developing BPH for having the genotype were calculated and the alleles were designated risk-bearing or protective. Results: Our data indicated that the A and B alleles of the VDR ApaI and BsmI SNPs were highly associated with increased risk of BPH (p=0.0168 and 0.0002, respectively). Moreover, 63% of the controls compared to 43% of the subjects with BPH were homozygous for none of the risk-bearing alleles (p=0.0123) whereas 60% of the controls and 28% of the subjects with BPH were homozygous for two or more protective alleles (p<0.0001). Conclusions: For the first time, our study demonstrated that ApaI and BsmI of the VDR gene are associated with risk of BPH among Lebanese men. Our study also indicated that overall polymorphism profile of all the genes involved in prostate physiology could be a better predictor of BPH risk.

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Testicular Steroidogenic Genes in Adult Rats

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • 제14권3호
    • /
    • pp.199-205
    • /
    • 2010
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD). The present study was undertaken to examine whether depletion of brain dopamine (DA) stores with 6-OHDA can make alteration in the activities of the testicular steroidogenesis in adult rats. Young adult male rats (3 months old) were received a single dose of 6-OHDA (200 ${\mu}g$ in 10 ${\mu}{\ell}$/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. The mRNA levels of steroidogenesis-related enzymes were measured by qRT-PCRs. Serum testosterone levels were measured by radioimmunoassay. Single icv infusion of 6-OHDA significantly decreased the mRNA levels of CYP11A1 (control:6-OHDA group=$1:0.68{\pm}0.14$ AU, p<0.05), CYP17 (control:6-OHDA group=$1:0.72{\pm}0.13$ AU, p<0.05). There were no changes in the mRNA levels of $3{\beta}$-HSD (control:6-OHDA group=$1:0.84{\pm}0.08$ AU) and $17{\beta}$-HSD (control: 6-OHDA group=$1:0.63{\pm}0.20$ AU), though the levels tended to be decreased in the 6-OHDA treated group. Administration of 6-OHDA decreased significantly the mRNA level of StAR when compared to the level of saline-injected control animals (control:6-OHDA group=$1:0.72{\pm}0.08$ AU, p<0.05). Treatment with single dose of 6-OHDA remarkably lowered serum testosterone levels compared to the levels of control group (control:6-OHDA group=$0.72{\pm}0.24:0.13{\pm}0.03ng/m{\ell}$, p<0.05). Taken together with our previous study, the present study demonstrated that the activities of hypothalamus-pituitary-testis hormonal axis could be negatively affected by blockade of brain DA biosynthesis, and suggested the reduced reproductive potential might be resulted in the animals. More precise information on the testicular steroidogenic activities in PD patients and PD-like animals should be required prior to the generalization of the sex steroid hormone therapy to meet the highest standards for safety and efficacy.

Effect of Toluene Application to the Rat Skin on the Oxygen Free Radical Metabolizing System (흰쥐에 있어서 피부조직의 Oxygen Free Radical 대사계에 미치는 Toluene의 영향)

  • 채순님;윤종국;박원학
    • Toxicological Research
    • /
    • 제17권1호
    • /
    • pp.33-39
    • /
    • 2001
  • To evaluate the skin toxicity oj topical toluene application, toluene (35 mg/$cm^2$) was sequentially applied to the portion rat skin for five days. The topical toluene application resulted in increased xanthine oxidase activity and CYP content, and significantly decreased superoxide dismutase and glutathione peroxidase activities at five days in rat skin. Especially catalase activity was remarkably decreased in toluene-applied rat skin. And benzylalcohol dehydrogenase activity showed also a significant decrease in toluene-applied skin. On the other hand, histopathological ultrastructural examination revealed disrupted epidermal basement membrane, rared intercellular adhensions and degenerated keratin layer due to topical toluene application. Increased deposit of cerrous perhydroxide resulted from reaction with $H_2O_2$was abserved in toluene-treated animals. These results indicate that oxygen free radical may be responsible for ultrastructural changes in skin tissue by toluene application to rat skin.

  • PDF