• Title/Summary/Keyword: CYP 3A4

Search Result 288, Processing Time 0.026 seconds

The Inhibitory Constituents from the Ginger on a Drug Metabolizing Enzyme CYP3A4 (생강의 약물대사효소 CYP3A4 저해 성분)

  • 차배천;이은희;권준택
    • YAKHAK HOEJI
    • /
    • v.48 no.5
    • /
    • pp.266-271
    • /
    • 2004
  • Ginger (Zingiber officinale Roscoe) is widely used as a common condiment for a variety of foods and beverages. In addition to its extensive utilization as a spice, the fresh or the processed rhizome is a useful crude drug in traditional Chinese medicine. It is considered to possess stomachic, carminative, stimulant, diuretic and antiemetic properties. Chemical studies on the pungent principles of ginger have been carried out by a number of investigators, and 6-gingerol and 6-shogaol as a major pungent substance have been isolated. In this study, the constituents inhibiting a drug metabolizing enzyme CYP3A4 from ginger were investigated. CYP3A4 is responsible for drug metabolism as heme-containing monooxygenases. As a result of experiment, 10-gingerol (lC$_{50}$ 5.75$\mu$M) isolated from EtOAc extract of ginger showed remarkable inhibitory activity compared to 6-gingerol ($IC_{50}$/ 14.56 $\mu$M) and zingerone ($IC_{50}$/ 379.63 $\mu$M). This paper describes the isolation, structure elucidation, and CYP3A4 inhibitory activity of these compounds. The structure of the compounds were identified by instrumental analysis such as LC-mass spectrometer and NMR.R.

Inhibiting Activity of Garlic on a Drug Metabolizing Enzyme CYP3A4 (마늘의 약물대사효소 CYP3A4 저해 활성)

  • Lee, Eun-Hee;Cha, Bae-Cheon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.97-102
    • /
    • 2006
  • Garlic(Allium sativum Linn) is widely used as a common condiment for a variety of foods and beverages. It has been well known that fresh garlic and garlic supplement of commercial preparations have various therapeutic properties including antimicrobial activity, antiplatelet aggregation, antihypertension, and cholesterol-lowering effects, which contribute to its increasing uses for an alternative medicine. Allicin(diallyl thiosulfinate), the major bioactive components of garlic, is formed by alliinase cleavage of the naturally occurring alliin upon crushing or mincing of garlic, and is the progenitor of a number of other products, such as diallyl disulfide. CYP3A4, heme-containing monooxygenase, is a key enzyme responsible for drug metabolism. Therefor, in the present study, we isolated and examined the compounds with CYP3A4-inhibiting activities from garlic. Among EtOAc extracts of garlic, we found that N-p-coumaroyltyramine and N-feruloyltyramine showed remarkable CYP3A4-inhibiting activities, compared to diallyl disulfide. Structures of the isolated active compounds were established by chemical and spectroscopic means.

Purification and Characterization of the Rat Liver CYP2D1 and Utilization of Reconstituted CYP2D1 in Caffeine Metabolism

  • Chung, Woon-Gye;Cho, Myung-Haing;Cha, Young-Nam
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.117-125
    • /
    • 1997
  • In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.

  • PDF

STABILIZATION OF CYP3A4 mRNA BY CO-EXPRESSION OF CYTOCHROME $B_5$ IN E. COLI.

  • Kim, Hyun-Jung;Park, Young-In;Dong, Mi-Sook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.143-143
    • /
    • 2001
  • Human cytochrome P450 (CYP or P450) 3A4 (CYP3A4) is the most abundant among P450s in human liver. We previously reported that the expression of CYP3A4 in membranes prepared from E. coli coexpressed the bicistronic construct of CYP3A4 and NADPH-P450 reductase with cytochrome b$_{*}$ (b5) was showed 20-60% higher than that in membranes from E. coli expressed only the bicistronic construct with culturing longer times (48-72h).(omitted)

  • PDF

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

CYP2W1, CYP4F11 and CYP8A1 Polymorphisms and Interaction of CYP2W1 Genotypes with Risk Factors in Mexican Women with Breast Cancer

  • Cardenas-Rodriguez, N.;Lara-Padilla, E.;Bandala, C.;Lopez-Cruz, J.;Uscanga-Carmona, C.;Lucio-Monter, P.F.;Floriano-Sanchez, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.837-846
    • /
    • 2012
  • Breast cancer (BCa) is the leading type of cancer in Mexican women. Genetic factors, such as single nucleotide polymorphisms (SNP) of P450 system, have been reported in BCa. In this report, and for the first time in the literature, we analyzed the rs3735684 (7021 G>A), rs11553651 (15016 G>T) and rs56195291 (60020 C>G) polymorphisms in the CYP2W1, 4F11 and 8A1 genes in patients with BCa and in healthy Mexican women to identify a potential association between these polymorphisms and BCa risk. Patients and controls were used for polymorphism analysis using an allelic discrimination assay with TaqMan probes and confirmed by DNA sequencing. Links with clinic-pathological characteristics were also analyzed. Statistical analysis was performed using the standard ${\chi}^2$ or Fisher exact test statistic. No significant differences were observed in the distributions of CYP2W1 (OR 8.6, 95%CI 0.43-172.5 P>0.05; OR 2.0, 95%CI 0.76-5.4, P>0.05) and CYP4F11 (OR 0.3, 95%CI 0.01-8.4 P>0.05) genotypes between the patients and controls. Only the CYP8A1 CC genotype was detected in patients with BCa and the controls. All polymorphism frequencies were in Hardy-Weinberg Equilibrium (HWE) in the controls (P>0.05). We found a significant association between BCa risk and smoking, use of oral contraceptives or hormonal replacement therapy (HRT), obesity, hyperglycemia, chronic diseases, family history of cancer and menopausal status in the population studied (P<0.05). Tobacco, oral contraceptive or HRT, chronic diseases and obesity or overweight were strongly associated with almost eight, thirty-five, nine and five-fold increased risk for BCa. Tobaco, obesity and hyperglycemia significantly increased the risk of BCa in the patients carrying variant genotypes of CYP2W1 (P<0.05). These results indicate that the CYP2W1 rs3735684, CYP4F11 rs11553651 and CYP8A1 rs56195291 SNPs are not a key risk factor for BCa in Mexican women. This study did not detect an association between the CYP2W1, 4F11 and 8A1 genes polymorphisms and BCa risk in a Mexican population. However, some clinico-pathological risk factors interact with CYP2W1 genotypes and modifies susceptibility to BCa.

The Inhibitory Effect of Achyranthes bidentata radix Extracts on Cytochrome P450-Catalyzed Reactions in Human Liver Microsomes (인체 간 Microsome에서 우슬 추출물의 Cytochrome P450 약물 대사효소에 대한 억제작용)

  • 김경아;이지숙;박히준;김진우;김창주;심인섭;한승무;임사비나
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • Objectives : Achyranthes bidentata radix (Usul) has been used as anti-arthritic, antiallergic, antidiuretic, and so on. Recently extracts of Achyranthes bidentata radix have shown anti-inflammatory and cancer preventive effects in vitro and in vivo. Methods : We therefore evaluated the inhibitory potential of ethanol extracts of Achyranthes bidentata radix on cytochrome P450 (CYP) isoforms-catalyzed reactions, which relate to causes of cancer and inflammation, including CYP1A2, CYP2C9, CYP2C19, CYP2E1, CYP2D6, CYP2C8, and CYP3A4, using human liver microsomal preparations. Results : The extracts showed weak or negligible inhibitory effects on CYP2C9-catalyzed (S)-warfarin 7-hydroxylation, CYP2C19-catalyzed S-mephenytoin 4-hydroxylation, and CYP2D6-catalyzed dextromethorphan O-demethylation with each IC50 over 1750 g/ml, respectively. However, it showed relatively significant inhibitory effect on CYP1A2-catalyzed phenacetin O-deethylation and CYP2E1-catalyzed chlorzoxazone 6-hydroxylation with IC50s of 970.5 g/ml and 821.4 g/ml, respectively. Conclusions : These results suggest that extracts of Achyranthes bidentata radix have inhibitory effects on CYP-catalyzed reactions, especiallyCYP1A2 and CYP2E1, in human liver microsomes. These effects appear to relate to anti-inflammatory and cancer prevention following decrease of reactive oxygen species formed by CYP, especially CYP1A2 and CYP2E1, by Achyranthes bidentata radix. However, further evaluation is necessary to demonstrate and to confirm its effects in human.

  • PDF

Pharmacokinetic Changes in Drugs during Protein-Calorie Malnutrition: Correlation between Drug Metabolism and Hepatic Microsomal Cytochrome P450 Isozymes

  • Lee, Joo-Hyun;Suh, Ok-Kyung;Lee, Myung-Gull
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.693-712
    • /
    • 2004
  • The rats with protein-calorie malnutrition (PCM, 5% casein diet for a period of 4-week) were reported to exhibit 60 and 80% suppression in the hepatic microsomal cytochrome P450 (CYP) 1 A2 and CYP2C11 levels, respectively, and 40-50% decreases in CYP2E1 and CYP3A 1/2 levels compared to control (23% casein diet for a period of 4-week) based on Western blot analysis. In addition, Northern blot analysis showed that CYP1 A2, CYP2E1, CYP2C11, and CYP3A1/2 mRNAs decreased in the state of PCM as well. Hence, pharmacokinetic changes of the drugs in rats with PCM [especially the area under the plasma concentration-time curve from time zero to time infinity (AUC) changes of metabolite(s)] reported from literatures were tried to explain in terms of CYP isozyme changes in the rats. Otherwise, the time-averaged nonrenal clearance ($CL_{NR}$) of parent drug was compared. Pharmacokinetic changes of the drugs in other types of malnutritional state, such as kwashiorkor and marasmus, in both human and animal models were also compared. The drugs reviewed are as follows: diuretics, antibiotics, anticancer agents, antiepileptics, antiarrythmics, analgesics, xanthines, antimalarials, and miscellaneous.

Cytochrome P-450 3A4 Proximal Promoter Activity by Histone Deacetylase Inhibitor in Hepg2 Cells

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.166-166
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. The transcription of CYP3A4 is regulated by the Pregnenolone X receptor (PXR),of which human form is Steroid and Xenobiotics receptor (SXR).(omitted)

  • PDF

Comparison Between TCDD and 3MC Action on CYP1A1 Expression and EROD Activity in the Isolated Perfused Female Rat Liver

  • Ahn, Mee R.;Sheen, Yhun Y.
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.587-594
    • /
    • 1998
  • In order to understand the mechanism if the regulation of CYP 1A1 gene expression and ethoxyresorufin deethylase (EROD) activity in ex vivo system, we have studied the action of TCDD and 3MC in the isolated perfused female rat liver. CYP1A1 mRNA level and EROD activity were measured in rat liver that was isolated and perfused with various chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3MC), 17$\beta$-estradiol (E$_2$), morin. TCDD or 3MC alone perfusion into female rat liver resulted in increase of CYP 1A1 mRNA level and the magnitude of stimulation was six times higher with TCDD treatment than 3MC treatment. However E$_2$ perfusion into female rat liver showed inhibition of CYP 1A1 mRNA level. When 10$^{-8}$ M E$_2$ was administered concomitantly with either 10$^{-9}$ M TCDD or 10$^{-9}$ M 3MC, stimulated CYP 1A1 mRNA by either TCDD or 3MC was inhibited. Morin was examined for its effects on CYP 1A1 mRNA level and result was similar to that was observed with estrogen. EROD activity was also stimulated with either TCDD or 3MC perfusion, and the magnitude of EROD stiumlation was smaller than that of CYP 1A1 mRNA stimulation in response to TCDD or 3MC perfusion. Unlike CYP1A1 mRNA level, stimulation of EROD activity was greater with 3MC than TCDD. Concomitant perfusion either E$_2$ or morin with TCDD or 3MC inhibited 3MC perfusion or TCDD perfusion stimulated EROD activity. These data suggested that TCDD and 3MC might act diffrently in terms of regulation of CYP 1A1 gene expression in rat liver.

  • PDF