최근 산업의 여러 분야에서 자동화 시스템이 발전함에 따라 3D 측정에 의한 물체의 높이 검사의 필요성이 점차 대두되고 있다. 여러 3D 측정 방법 중에서 본 논문에서 다루는 방법은 위상 측정법으로, 위상 측정법이란 프린지 패턴의 위상값을 이용하여 물체의 높이를 구하는 방법이다. 위상 측정법은 연산량이 많이 필요한 알고리즘이기 때문에 이를 효율적으로 해결할 방법이 필요하다. 본 논문에서는 이를 위해 NVIDIA에서 나온 CUDA를 사용할 것을 제안했다. 또 CUDA에서 제공하는 Pinned memory와 Stream을 사용할 것을 제안하였다. 이를 통해 정확도를 유지하면서 측정 속도는 크게 향상시킬 수 있었고 실험을 통해 성능을 입증하였다.
CPU를 능가하는 GPU의 연산능력 향상으로 범용 계산에 그래픽 프로세서를 사용하는 GP-GPU연구가 활발히 전개되고 있으며, 그 응용분야가 확대되고 있다. 본 논문에서는 전자기학 관련 분야에서 널리 사용되는 FDTD 알고리즘을 nVIDIA에서 제공하는 소프트웨어 플랫폼인 CUDA를 사용하여 구현한다. FDTD 알고리즘의 주요 연산과정을 병렬화하고, 그래픽 카드 내각기 다른 메모리의 사용에 따라 최적화하며, 단일 프로세서에서 FDTD 알고리즘을 실행시킨 경우와 비교하여 그 성능 향상 정도를 측정한다. 실험결과 단일 프로세서로 구현하였을 때에 비해 실행시간이 45배까지 향상됨을 확인할 수 있었다.
볼륨 렌더링은 볼륨 데이터로부터 유용한 정보를 추출하여 시각화 하는 방법이다. 일반적으로 볼륨 렌더링에서 사용하는 데이터가 크기 때문에 실시간 처리가 가능한 수준의 빠른 렌더링을 위한 가속기법들이 중요하다. 최대-최소 8진트리는 고속 볼륨 렌더링을 위한 자료구조이지만, 볼륨데이터가 클수록 생성시간이 오래 걸리는 문제가 있다. 본 논문에서는 CUDA를 이용하여 GPU에서 최대-최소 8진트리의 생성을 가속화 하는 방법을 제안한다. 먼저 볼륨데이터에 Space Filling Curve를 적용하여 3차원의 데이터를 연속적인 1차원 배열형태로 변환한다. 이렇게 변환된 데이터로부터 최대-최소 8진트리 자료구조를 만들어 빈공간 도약기법에 적용함으로써 렌더링 속도를 향상시킬 수 있다.
Journal of Advanced Marine Engineering and Technology
/
제34권6호
/
pp.858-863
/
2010
H.264/AVC를 이용한 동영상의 부호화에서 그 속도를 높이기 위해서는 움직임 예측시간을 줄이는 것이 매우 중요하다. 본 논문에서는 H.264/AVC 부호기의 오픈 소스인 x.264를 대상으로 움직임 예측 알고리즘을 CUDA 기반에서 구현함으로서 기존의 압축 기술 이상의 속도 향상 및 CPU의 점유율을 경감 시킬 수 있음을 검증한다.
The performance issues of screening large database compounds and multiple query compounds in virtual screening highlight a common concern in Chemoinformatics applications. This study investigates these problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are presented in this paper. The design involves solving two important stages of group fusion, namely, similarity search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The outcome of the analysis from these three different design approaches influenced the design of parallel CUDA version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had been CUDA-optimized.
본 연구에서는 교통 신호를 능동적으로 제어하기 위하여 횡단보도영역에서 보행자의 행동을 판단하는 방법을 제안한다. 코드북기법을 이용하여 보행자 객체를 검출하고, 외곽선을 정보를 획득한다. 신속한 객체 검출을 위하여 CUDA(Compute Unified Device Architecture)기반 병렬화 처리한다. 해당 객체의 형상정보에 왜곡을 일으키는 투영 음영을 제거한 후, 보행자 객체가 보행자인지 혹은 차량, 동물인지를 식별하기 위해 힐버트 스캔 거리값(Hilbert Scan Distance)을 이용한 형판정합 기법을 수행한다. 정합 후에는 보행자 객체의 움직임, 얼굴영역의 특징, 대기 시간의 분석을 통하여 보행자의 횡단보도 이용 의지를 판단하고 교통신호를 제어한다.
본 논문은 GPU(Graphics Processing Unit) 에서 CUDA(Compute Unified Device Architecture)를 사용하여 실시간으로 객체를 분할하는 방법을 소개한다. 최근에 감시 시스템, 오브젝트 추적, 모션 분석 등의 많은 응용 프로그램들은 실시간 처리가 요구된다. 이러한 단계의 선행부분인 객체 분할 기법은 기존 CPU 기반의 시스템으로는 실시간 처리에 제약이 발생한다. NVIDIA에서는 Parallel Processing for General Computation 을 위해 그래픽 하드웨어 제약을 개선한 CUDA platform을 제공하고 있다. 본 논문에서는 객체 추출 단계에 대표적인 적응적 가우시안 혼합 배경 모델링(Adaptive Gaussian Mixture Background Modeling) 알고리즘과 Classification 기법으로 사용되는 CCL (Connected Component Labeling) 알고리즘을 적용하였다. 본 논문은 2.4GHz를 갖는 Core2 Quad 프로세서와 비교하여 평가하였고 그 결과 3~4배 이상의 성능향상을 확인할 수 있었다.
Doppler weather radar is an important tool for meteorological research. Through several decades of development, Doppler weather radar has enormous progress in understanding, detection and warning of meso and micro scale weather system. It makes a significant contribution to weather forecast and weather disaster warning. But the large amount of data process limits the application of Doppler weather radar. This paper proposed for fast weather radar data processing based on CUDA. CDUA is a powerful platform for highly parallel programming developed by NVIDIA. Through running plenty of threads, radar data can be calculated at same time. In experiment, CUDA parallel program can significantly improve weather data processing time.
반도체 공정에서 소자의 제조 비용 감소를 위해 제조 공정 검증을 위한 시뮬레이션을 수행하게 된다. 이 시뮬레이션은 반도체 소자 내부의 물리량 계산을 통해 반도체 소자 내부의 불순물의 거동을 해석하게 된다. 이를 위해 사용되는 알고리즘으로 3차원적 형상을 표현하는 물리적 미분 미분방정식을 계산하게 되는데, 정확한 계산을 위해 유한 차분 시간 영역법(이하 FDTD)과 같은 수치해석 기법을 이용한다. 실제적으로 반도체 공정의 시뮬레이션에서 FDTD연산의 실행 시간은 90% 이상을 소요하게 된다. 이러한 연산에서 더욱 빠른 성능을 확보하기 위해 본 논문에서는 기존의 CUDA(Compute Unified Device Architecture)로 구현된 FDTD알고리즘을 OpenMP를 통한 다중 GPU제어를 이용하여 연산 수행시간을 감소하고, 그 결과물을 통하여 성능 향상도를 측정한다.
A pose estimation process from medical images is calculating locations and orientations of objects obtained from Computed Tomography (CT) volume data utilizing X-ray images from two directions. In this process, digitally reconstructed radiograph (DRR) images of spatially transformed objects are generated and compared to X-ray images repeatedly until reasonable transformation matrices of the objects are found. The DRR generation and image comparison take majority of the total time for this pose estimation. In this paper, a fast DRR generation technique based on GPU parallel computing is introduced. A volume ray-casting algorithm is explained with brief vector operations and a parallelization technique of the algorithm using Compute Unified Device Architecture (CUDA) is discussed. This paper also presents the implementation results and time measurements comparing to those from pure-CPU implementation and open source toolkit.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.