1970년대 라디오 주파수를 사용하여 컴퓨터 통신 네트워크가 구축된 이후 눈부신 발전을 거듭하여 Personal Computer 뿐만 아니라 Mobile이나 Tablet PC등에서도 인터넷이 가능하다. 이렇게 다양한 매체를 통해 인터넷을 사용함에 따라 보안에 대한 중요성이 높아지고 있다. 하지만 최근 현대 캐피탈이나 농협, 네이트와 같은 해킹 사례를 보면 평문 데이터 사용에 의해 피해가 더욱 확대 되었다. 평문 데이터 사용함에 따라 보안 위협이 커지는데 평문 데이터를 사용하는 이유를 암호화를 사용했을 때보다 QoS 하락 때문이라고 볼 수있다. 이를 해결하기 위해 고정된 인프라에서 잉여 자원인 GPU를 사용하여 암호화를 할 때 QoS 하락을 줄일 수 있을 것이다. 또한 CPU보다는 멀티코어를 사용한 병렬 처리를 활용하여 CPU보다 상대적으로 효율적인 암호화가 가능하다고 생각한다. 본 논문에서는 CPU를 이용한 암호화 처리 속도와 GPU를 이용한 암호화 처리 속도를 비교하여 GPU를 이용한 암호화 처리 가능성을 검토하였다.
최근 OpenCL, CUDA와 같은 이종 병렬 컴퓨팅 프레임워크가 등장함에 따라, 많은 연산량을 요구하는 알고리즘에 대한 이종 병렬 처리 연구가 늘고 있다. 본 논문에서는 연산량이 많은 지문개선(fingerprint enhancement) 알고리즘을 OpenCL을 이용해 병렬화하고 최적화하여 연산 시간을 단축하고자 한다. 이를 위하여 2차원 FFT 및 필터링 알고리즘을 병렬화하고, Loop Unrolling 및 메모리 접근 최적화 등의 기법을 적용하였다. 실험을 통하여 CPU의 순차적 처리기법과 비교하여 개선된 가속화 기법을 이용한 지문개선 알고리즘이 최대 25배의 성능이 향상하였음을 확인하였다.
The purpose of this study is to design a system that can be used for military simulation and virtual training using the location information of individual soldier's weapons. After acquiring the location information using Arduino's GPS shield, it is designed to transmit data to the Smartphone using Bluetooth Shield, and transmit the data to the server using 3G/4G of Smartphone in real time. The server builds the system to measure, analyze and manage the current position and the tracking information of soldier. Using this proposed system makes it easier to analyze the training situation for individual soldiers and expect better training results.
본 논문에서는 GPU를 이용하여 x-ray영상의 질을 개선시키기 위해 라플라시안 피라미드 방법을 제시한다. 의료영상에서 중요시하는 특징의 추출을 위해 원영상을 다중레벨의 부영상으로 신호를 분해하며, 각 레벨에서 가우시안 스무딩 함수를 사용하여 영상의 대비를 확장시킨다. 분해된 영상을 기반으로 전체영상을 재구성하여 영상의 질을 향상시키게 된다. 이러한 과정은 많은 계산을 필요로하며, 효과적이고 바른 처리를 위해 GPU를 사용한다., 결과에서 GPU를 이용한 cuda 프로그램이 효과적으로 동작하며, 영상의 질을 향상시킴을 보인다.
본 논문에서는 심도(Depth) 카메라로부터 실시간 획득한 RGBD 데이터에서 심도 정보 기반의 AAM(Active Appearance Models)과 나이 인식 알고리즘[1]을 통해 4 개의 AG(Age Group)으로 분류하는 실시간 얼굴 나이 인식 시스템(Real-time Facial Age Recognition System)을 설계한다. 기존의 AAM 을 이용한 실시간 얼굴 특징 추출은 평균 약 4.17%의 프레임 손실율을 보였으나, 심도 정보를 활용한 AAM 은 평균 약 0.43%의 프레임 손실율만을 보였다[5]. 본 논문에서는 심도 정보를 활용한 AAM과 병렬 처리 방법인 CUDA 를 결합하여 나이 특징을 추출하고, 실시간 시스템에 적용 가능하도록 나이 인식 알고리즘을 개선하여 실시간 나이 인식 시스템을 설계한다. 설계된 시스템은 1)머리 위치 추적, 2)얼굴 인식 및 특징점 추출, 3)나이 특징 추출, 4) 나이 특징 분석, 5) 나이 분류의 5 가지 단계를 통해 최종적으로 4 개의 AG 로 분류한다.
Journal of information and communication convergence engineering
/
제19권4호
/
pp.257-262
/
2021
Providing web services to users has become expensive in recent times. For better web services, a web server is provided with high-performance technology. To achieve great web service experiences, tools such as general-purpose graphics processing units (GPGPUs), artificial intelligence, high-performance computing, and three-dimensional simulation are widely used. However, graphics processing units (GPUs) are used in high-speed operations and have limited general applications. In this study, we developed a task queue in a GPU to improve the performance of a web service using a multiprocessor and studied how to receive and process user requests in bulk. We propose the use of a GPGPU-based task queue to process user requests more than GPGPU based a central processing unit thread, and to process more GPU threads on task queue at about 136% to 233%, and proved that the proposed method is effective for web service.
International Journal of Internet, Broadcasting and Communication
/
제11권3호
/
pp.1-7
/
2019
Previously, parallel computing was mainly used in areas requiring high computing performance, but nowadays, multicore CPUs and GPUs have become widespread, and parallel programming advantages can be obtained even in a PC environment. Various parallel programming frameworks using multicore CPUs such as OpenMP and PPL have been announced. Nvidia and AMD have developed parallel programming platforms and APIs for program developers to take advantage of multicore GPUs on their graphics cards. In this paper, we develop digital image transformation programs that runs on each of the major parallel programming frameworks, and measure the execution time. We analyze the characteristics of each framework through the execution time comparison. Also a constant K indicating the ratio of program execution time between different parallel computing environments is presented. Using this, it is possible to predict rough execution time without implementing a parallel program.
Journal of information and communication convergence engineering
/
제16권4호
/
pp.235-241
/
2018
Recently, deep learning has been actively studied and applied in various fields even to novel writing and painting in ways we could not imagine before. A key feature is that high-performance computing device, especially CUDA-enabled GPU, supports this trend. Researchers who have difficulty accessing such systems fall behind in this fast-changing trend. In this study, we propose and implement a library called Emulearner that helps users to utilize Emulab with ease. Emulab is a research framework equipped with up to thousands of nodes developed by the University of Utah. To use Emulab nodes for deep learning requires a lot of human interactions, however. To solve this problem, Emulearner completely automates operations from authentication of Emulab log-in, node creation, configuration of deep learning to training. By installing Emulearner with a legitimate Emulab account, users can focus on their research on deep learning without hassle.
In this paper, we introduce a technique for 360-degree panoramic video streaming with multiple virtual cameras in real-time. The proposed technique consists of generating 360-degree panoramic video data by ORB feature point detection, texture transformation, panoramic video data compression, and RTSP-based video streaming transmission. Especially, the generating process of 360-degree panoramic video data and texture transformation are accelerated by CUDA for complex processing such as camera calibration, stitching, blending, encoding. Our experiment evaluated the frames per second (fps) of the transmitted 360-degree panoramic video. Experimental results verified that our technique takes at least 30fps at 4K output resolution, which indicates that it can both generates and transmits 360-degree panoramic video data in real time.
대용량 영상 데이터 처리를 위한 GPU 는 많은 코어들을 이용한 병렬 작업을 통해 결과를 도출한다. 단순 수치 연산에 특화된 이러한 GPU 의 계산 능력을 다른 분야로 확장시켜 적용하고자 하는 시도인 GPGPU 는 이전부터 꾸준히 시도되고 있다. 그러나 GPU 의 난해하고 생소한 프로그래밍으로, 작성이 쉽지 않고 현격한 성능 향상을 기대하기 어렵다. 이에, 이러한 GPGPU 프로그래밍의 어려움을 해결하고자 여러 프로그래밍 모델들이 등장하였다. 본 논문에서는 GPGPU 프로그래밍을 위한 대표적인 모델인 CUDA, OpenCL, C++ AMP, 그리고 OpenACC 에 대해 살펴본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.