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Abstract

Recently, deep learning has been actively studied and applied in various fields even to novel writing and painting in ways we

could not imagine before. A key feature is that high-performance computing device, especially CUDA-enabled GPU, supports

this trend. Researchers who have difficulty accessing such systems fall behind in this fast-changing trend. In this study, we

propose and implement a library called Emulearner that helps users to utilize Emulab with ease. Emulab is a research framework

equipped with up to thousands of nodes developed by the University of Utah. To use Emulab nodes for deep learning requires a

lot of human interactions, however. To solve this problem, Emulearner completely automates operations from authentication of

Emulab log-in, node creation, configuration of deep learning to training. By installing Emulearner with a legitimate Emulab

account, users can focus on their research on deep learning without hassle.

Index Terms: Deep Learning, Distributed Learning, Emulab

I. INTRODUCTION

Artificial intelligence is intelligence created by a machine

whereby a computer enables human learning, thinking, and

self-development so that it has a similar intelligence than a

person [1]. In order to create such an artificial intelligence,

artificial neural network is utilized to imitate the decision

process of the human brain.

To create a sophisticated artificial neural network, the data

is repeatedly computed according to the layer of the artificial

neural network to improve the accuracy. For this reason,

graphical processing units (GPUs) that perform simple oper-

ations with a larger number of cores show faster learning

time than CPUs that perform sequential operations using a

limited number of cores. However, if there are only GPUs

without CUDA, one cannot but use CPU. Even in an envi-

ronment that depends on the CPU, the learning time can be

shortened by constructing the cluster environment and per-

forming the learning in parallel. However, not everyone can

build a parallel/distributed environment on his or her own.

To solve these problems, one can use cloud-based machine

learning services like Amazon Web Service (AWS) Deep

Learning AMI (Amazon Machine Image), Microsoft Azure

Machine Learning, IBM Watson, and Google Cloud Machine

Learning Engine [2-5]. AWS Deep Learning AMI helps

users run various deep learning applications by providing

many open source deep learning frameworks such as Apache

MXnet, TensorFlow, Microsoft Cognitive Toolkit (CNTK),

Caffe, Caffe2, Theano, Torch, Keras, etc. Azure Machine

Learning uses the drag-and-drop approach, not necessary to

typing commands. In IBM Watson equipped with many tools

like TensorFlow, Keras, PyTorch, and Caffe, users can also

compose their own neural networks via the drag-and-drop

user interface. The biggest advantage of Google Cloud

Machine Learning Engine is to train learning models by

using other Google services such as Google Cloud Storage,

Dataflow, and Datalab. In addition, by using hyperparameter

tuning, the selection of important parameters that affect the
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machine learning algorithm performance can be optimized.

However, since these free functions of the services are lim-

ited, it costs a lot to solve real problems using all the func-

tions and resources of the service. 

To alleviate this burden, we propose to use Emulab, which

was proposed and implemented at the University of Utah and

is currently in use throughout the world as a research frame-

work [6]. KREONet in Korea has also built and operated an

Emulab, and it has been used in education and research [7].

Emulab provides on-demand allocation of the OS environ-

ment and network settings that users want using hundreds of

PCs and high-performance network switches. Users who

already have an account in Emulab can use the cluster by

allocating resources for a short time without having to build

their own physical clusters. 

However, the use of Emulab in the area of deep learning

needs a lot of human interactions because researchers need

to configure all nodes separately for every experiment. It is

almost impossible to use Emulab as is. To solve this prob-

lem, we propose and implement a user library, called Emu-

learner, completely automating operations from authentication

of Emulab log-in, node creation, configuration of deep learn-

ing to training. That is, Emulearner removes any need to

visit the Emulab web page that was the main interface

between Emulab and its users. In our experiment, we asked a

group of students to use Emulab as is and measured how

long they spent in each step. On average, it takes about 81

seconds to configure one node through the original web

interface. In addition, as the number of nodes increases, the

total overhead grows proportionally, hampering the use of

Emulab for deep learning area as is. However, by using

Emulearner, the overhead becomes zero, successfully chang-

ing Emulab into a nice resource pool for deep learning. 

This paper is organized as follows. Section II briefly

describes TensorFlow. Section III explains in details how to

use Emulab for deep learning. Section IV describes the

implementation of Emuleaner and Section V compares the

overhead of human interaction and library usage. Finally,

Section VI presents our conclusions.

II. DISTRIBUTED LEARNING TECHNIQUES IN 

TENSORFLOW

TensorFlow is an open source machine learning library

developed by the Google brain team for the purpose of

studying machine learning and deep neural network [8, 9].

The TensorFlow library provides two distributed learning

techniques called Data and Model parallelism. The Data par-

allelism divides training data and shares parameters. The

Model replicas send to a parameter server the slope gained

from each train. The parameter server that receives the slope

data merges and updates the slope data, allowing the model

replicas to update the new parameter data. The cycle in

which data must be transferred between different devices is

longer than the Model parallelism, and each replica can learn

independently of other replicas.

In contrast, the Model parallelism method divides the

parameters and shares the training data among nodes. In this

model, the weight needed for computation during forward

and back propagation must be communicated through the

machine. Therefore, it is considered that the Model parallel-

ism is suitable for an environment where data is exchanged

between GPU devices rather than network-based data

exchange. Therefore, in our study, we chose the Data paral-

lelism because the KREONet Emulab exchanges data by

using network.

III. USE OF EMULAB AS RESOURCE POOL FOR 

DEEP LEARNING

This section describes how to use Emulab for deep learn-

ing resource pool. Especially, we describe the procedure for

using TensorFlow, which many people use for deep learning,

in many nodes of Emulab. This procedure will be helpful for

people who use TensorFlow in Emulab in the future, but it is

also the reason why we developed the library we propose in

this study.

The steps for using Emulab are as follows: obtain an Emu-

lab account; request the necessary resources using the Emu-

lab web GUI; connect to the reserved nodes, and run

Tensorflow. For an Emulab account, a researcher needs to

find a preferred Emulab system and sends a request to its

administrator. After the request is granted, he or she will get

an ID.

The procedure for requesting the necessary resources through

the Emulab web GUI is as follows. First, the researcher visits

the Emulab web page and starts by logging in with the ID

and password. Emulab allocates resources in experiment

units, so the researcher needs to create an experiment by

clicking “Begin an Experiment” as shown in Fig. 1. The

experiment creation page appears (Fig. 2). Then, it is neces-

sary to select Project and enter the experiment name and a

brief description. According to our measurements, research-

ers spend an average of 38.88 seconds from visiting Emulab

web page to inputting the experiment’s description.

The next step is to click on the NetBuild GUI to draw the

nodes with their operating systems, and the network topol-

ogy. On the left, node and LAN are the resources to choose

from (Fig. 3). The researcher will drag and drop as many

nodes and LAN as he wants into the central pane. Then,

when he clicks a component and drags it to another compo-

nent, a direct link is formed between the two components, so

he connects the components until he configures the desired

topology. Learning performance may vary depending on the
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topology, but because the topic is out of the scope of this

study, we only add nodes without a topology. IP is still

assigned even if no topology is used, and it can be accessed

internally or externally. According to our measurements, the

time required to add one node is 1.19 seconds on average,

and the total overhead increases proportionally as the num-

ber of nodes increases.

Then, when the researcher clicks on the bottom right “cre-

ate experiment”, Emulab finds available nodes, loads the

operating system, and allocates new IPs. When the experi-

ment creation is complete, the experiment becomes active

and is now ready to access each node. Note that, as the num-

ber of active experiments continues to increase, all resources

will be eventually assigned and new experiments will no

longer be possible. To prevent this, Emulab recovers all

resources that were assigned to the experiment kept idle for

a certain period of time and changes the state of the experi-

ment to inactive. Emulab calls it swap-out. Conversely, it is

called swap-in to reallocate resources required for an inac-

tive experiment by a user's request.

The reason why Emulab’s swap-out and swap-in is related

to this study is that each researcher must visit Emulab home-

page using a web browser to log in and create a new experi-

ment or reactivate an existing experiment at every deep

learning experiment. This means that the human's configura-

tion overhead occurs every time because the researcher

needs a visual interaction with a keyboard or mouse for each

experiment. This is a significant inconvenience to research-

ers when conducting many experiments simultaneously or

sequentially.

The next step is to visit each node and prepare to install

TensorFlow. For this, the researcher collects first newly-allo-

cated IP information.

The researcher clicks on an active experiment’s link to see

a list of reserved nodes (Fig. 4). By clicking a node ID link,

he can see the details of the selected node (Fig. 5). Accord-

ing to our measurements, it takes about 6.73 seconds to

check the IP of one node and copy and paste it to an editor

program, and the total overhead increases proportionally as

the number of nodes increases.

Note that IP allocation cannot be predicted in advance

because it depends on the IP available when generating

experiments. If a swap-out experiment is swapped in, the

number of nodes, the network topology, and the operating

system version are the same, but the IP is newly allocated. In

other words, the researcher must check the IP every time a

new experiment is performed, and the IP information collec-

tion time increases in proportion to the number of nodes.

The next thing to do is to install the TensorFlow package

on each node. Because Emulab loads a clean operating sys-

tem image, all necessary tools must be installed by the

researcher. According to the TensorFlow installation manual,

it is necessary to install python-dev and python-pip [10, 11].

Fig. 1. Begin an Experiment page.

Fig. 2. Experiment creation page.

Fig. 3. Node and topology creation.

Fig. 4. Reserved node Information.

Fig. 5. Node Information.
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python-dev is a package containing the header files needed

to build Python extensions, and python-pip is a package

management system for managing and installing software

packages written in Python. Fig. 6 shows the TensorFlow

installation command.

The time required to log in to a node and enter the above

setup command takes an average of 16.40 seconds. This is

the time to enter the install command, not the installation

time. Since this task has to be repeated in all nodes, the

working time increases in proportion to the number of nodes.

The important thing is that in Emulab’s swap-out and swap-

in process, all the information installed on each node disap-

pears and the clean image is reloaded. The overhead of

entering this script is repeated at the number of nodes at

every experiment.

At this point, we found that in using Emulab for deep

learning, researchers would not find it useful to reuse exist-

ing experiments that were swapped out. The reason for this

is that swap-in has almost no advantages over a new creation

of experiment, because all the information installed on each

node disappears and the clean image is reloaded during

swap-out and swap-in. Other studies that use Emulab often

compare network topologies, so reconfiguring swap-in nodes

may occasion less overhead than redrawing the network

topology. However, for data parallelism in deep learning,

topology is not important, only IP is necessary. Also, it is

beneficial to visit the Emulab web page and use the available

nodes as much as possible to get the training done quickly.

Therefore, it is not necessary to use an experiment with a

specific number of nodes. So, from now on, we assume that

both researchers and libraries will create new experiments

instead of using swap-out ones.

The data needed for experiment is uploaded to Emulab’s

file server only once and all nodes share it. Therefore, we do

not consider the file upload overhead.

The next step for running TensorFlow adds the assigned IP

and port number to the TensorFlow script. Port numbers can

be any available port number, since these systems are clean

OS, so any port greater than 1023 is not a big problem. For

example, Fig. 7 is part of the TensorFlow script used in this

study. Five nodes were allocated as one for parameter server

and four nodes for worker nodes. Since this file is shared by

all nodes, this editing is performed once for each experi-

ment. The time to add one IP information using the editor is

on average 4.45 seconds, and the editing time increases as

the number of nodes increases.

Training starts by running the program edited above with

the appropriate option as shown in Fig. 8. The time to visit

each node and input the execution script is about 18.77 sec-

onds, and the start overhead is proportional to the number of

nodes since all nodes must be visited.

IV. EMULEARNER: LIBRARY UTILIZING EMULAB 

FOR DEEP LEARNING 

In the previous section, we showed that there are various

overheads to utilize Emulab for deep learning. Although

detailed overhead analysis will be described in the next sec-

tion, let us take a simple example. When we create an exper-

iment with 100 nodes, it is an arduous labor to collect all the

IPs of that number, connect to each node, install TensorFlow

and run the script in all nodes. Therefore, the present state of

Emulab is almost impossible to use for deep learning. This

research proposes and implements Emulearner, a library that

can change Emulab into a friendly deep learning resource

pool. Emulearner acts like a normal library, but it can simply

remove all the interaction overhead required to use Emulab.

Table 1 shows the list of library methods.

Fig. 9 illustrates how easily a researcher utilizes Emulab

by using Emulearner. He sets up a five-node experiment by

calling node_count(5) and set the number of training to five

by epoch_count(5). Then, he configures training path, learn-

ing file path, id, and password by calling training_path

(“Q:\Exp\Data”), learning_file(“default”) and account(“account”,

“password”). Finally, calling Learning() starts training.

Now, we will explain the implementation of the library.

The library eliminated all user interactions described in the

previous section and almost everything is implemented in

Learning(). The main part of Learning() source code is

Fig. 6. TensorFlow installation command.

Fig. 7. Tensorflow script editing.

Fig. 8. Script running command. 
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shown in Fig. 10. login() automatically logs in to the Emulab

web page [12]. nodes_for_learning has the value of the

parameter passed to node_count(). In the present example, 5

is stored. node_creating() adds as many nodes as node_

for_learning nodes to an experiment, generates an experi-

ment creation request URL, and sends it to Emulab web

server to perform node creation [12, 13]. The node_list

stores the number of nodes that have completed the request.

If this value is different from node_for_learning, the pro-

gram is terminated.

checking_node_status() continually checks whether the

creation of the requested experiment is complete. It checks

every minute and if it fails to generate, it outputs the rele-

vant log to the screen and exits the program. When the

experiment is successfully created, it returns normal. Then,

__file_trans_for_env() transfers the TensorFlow installation

file. __file_validation() checks that the user's TensorFlow

script is written in the format provided by the library. This

library automatically modifies parameter server, worker,

epoch number, and so on. Therefore, if the user script does

not match the script format provided by the library, it cannot

be modified automatically. If it is a normal format, the

library compresses and transfers the script and data files.

The last function, __setting_learning(), modifies the Ten-

sorflow script, install TensorFlow on each node, begin the

script in all nodes, and download the final weight file when

the experiment ends.

V. EXPERIMENT 

This section shows how much user time our library can

save. We obtained the user interaction overhead in Section

III by teaching ten graduate students how to use Emulab,

then repeatedly experimenting ten times and measuring the

average time spent in each step. We measured the average of

the library's overhead by repeating ten times. Due to the

availability of KREONet Emulab, we have actually created

up to ten nodes. We designed a formula to predict the time

required to generate a larger number of nodes.

Table 2 compares the step-by-step overhead between web

UI and Emulearner automation. Web UI column’s shows

how long it will take for a researcher to utilize Emulab

through web UI while Emulearner automation column to use

Emulab through Emulearner. The proportional column

shows whether overhead is added per experiment or propor-

tional to the number of nodes, and a variable name is

assigned to each overhead in order to express the total over-

head through formulas. Node creation and package installa-

tion are the same time spent in user interaction and the

library.

Interestingly, when we created one to ten nodes, there was

little difference in node creation time. We assume that Emu-

lab is configured to load multiple nodes in parallel. So node

creation time can be said to be proportionate to experiment,

not the number of nodes.

The reason for entering the package installation command

and TensorFlow command for each node is slightly longer

than expected is that the overhead of logging in to each node

using software such as putty is included [14]. Script editing

Table 1. Units for magnetic properties

Method name Description

Emulearner()
Constructs a new Emulearner to use 

Emulab

node_count(int count) Set the number of nodes

epoch_count(int count) Set the number of training

training_path(String filepath) Set the dataset for learning

learning_file(String filepath) Set the learning script file 

account(String user, String pass-

word)

Set the account of Emulab for 

authentication

Learning() Start the learning

Fig. 9. Library usage example.

Fig. 10. Learning() source code.
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overhead is a per node value. That is, if a researcher enters

ten IPs, we expect the editing will take about 4.45 seconds.

The total overhead value is the net overhead time exclud-

ing node creation and package installation time, and the total

preparation is the total time taken before the start of the

learning. However, this time is for configuring only one

node’s environment. If the number of nodes increases, the

total overhead and total preparation time increase because

the proportional overhead increases linearly.

By using Emulearner, the total overhead was reduced from

81.41 seconds to 6.02 seconds by 92.6%, and the total prepa-

ration decreased by 13.6% from 554 seconds to 478.61 sec-

onds.

Based on the experimental results described above, we

created formulas to predict the total overhead and the total

preparation. We grouped steps that are proportional to the

number of nodes, n, and then, we obtained the coefficient of

n by summing the times required in the proportional step.

All the variables in the formulas are defined in variable col-

umn of Table 2.

(1)

(2)

The new formulas with real numbers are shown below.

(3)

(4)

(5)

(6)

The overhead and preparation time required to create up to

100 nodes are shown in Fig. 11. It seems that TO(lib) does

not increase even if the number of nodes increases. This

means that there is almost no extra overhead all the time.

More importantly, TO(user) is the overhead that users need

to spend, whereas TO(lib) is the overhead that the library

spends for automation. That is, through Emulearner, human

researchers are completely free from Emulab manipulation

time.

VI. CONCLUSION

Emulab is a research framework actively used in various

studies. We proposed an efficient method to use Emulab for

deep learning. Using the existing web interface, each experi-

ment required approximately 47 seconds of user overhead

per node. This means that it is difficult to use Emulab for

deep learning with many nodes.

To solve this problem, we proposed and implemented a

library, called Emulearner, to automate account authentica-

tion, node creation, node configuration, and training. This

library eliminates user intervention and successfully trans-

forms Emulab into a convenient resource pool for deep

learning. But our library has a limitation for various neural

networks because current library is utilizing the only one

 TO⋅ LE n
*

NA IP PC SE TC+ + + +( )+=

 TP⋅ LE NC n
*

NA IP PC PI SE TC+ + + + +( )+ +=

 TP user( )⋅ 137.18 n
*
416.72+=

 TP lib( )⋅ 108.42 n
*
370.19+=

 TO user( )⋅ 33.88 n
*
47.53+=

 TP lib( )⋅ 5.02 n
*
1.02+=

Table 2. User and library overhead

Step Web UI (s) Emulearner automation (s) Proportional Variable

Emulab log-in & experiment description 33.88 5.02 Experiment LE

Node addition 1.18 0.30 Node NA

Node creation 103.40 103.40 Experiment NC

IP check 6.73 0.39 Node IP

Package installation command 16.40 0.12 Node PC

Package installation 369.19 369.19 Node PI

Script editing 4.45 0.07 Node SE

TensorFlow command 18.77 0.12 Node TC

Total overhead 81.41 6.02 - TO

Total preparation 554.00 478.61 - TP

Fig. 11. Total overhead and preparation time prediction.
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neural network called like convolutional neural network

[15]. In addition, this library is designed to work with KRO-

Net Emulab, so modest customization is required for other

Emulab sites.

For the future research, we will provide various neural net-

works that a user can select the neural network users want.

In addition, we are developing libraries that can be used in

various fields such as security.
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