• 제목/요약/키워드: CUDA(CUDA)

검색결과 295건 처리시간 0.029초

YOLOv2와 무인항공기를 이용한 자동차 탐지에 관한 연구 (The Study of Car Detection on the Highway using YOLOv2 and UAVs)

  • 서창진
    • 전기학회논문지P
    • /
    • 제67권1호
    • /
    • pp.42-46
    • /
    • 2018
  • In this paper, we propose fast object detection method of the cars by applying YOLOv2(You Only Look Once version 2) and UAVs (Unmanned Aerial Vehicles) while on the highway. We operated Darknet, OpenCV, CUDA and Deep Learning Server(SDX-4185) for our simulation environment. YOLOv2 is recently developed fast object detection algorithm that can detect various scale objects as fast speed. YOLOv2 convolution network algorithm allows to calculate probability by one pass evaluation and predicts location of each cars, because object detection process has simple single network. In our result, we could find cars on the highway area as fast speed and we could apply to the real time.

반도체 웨이퍼 고속 검사를 위한 GPU 기반 병렬처리 알고리즘 (The GPU-based Parallel Processing Algorithm for Fast Inspection of Semiconductor Wafers)

  • 박영대;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1072-1080
    • /
    • 2013
  • In a the present day, many vision inspection techniques are used in productive industrial areas. In particular, in the semiconductor industry the vision inspection system for wafers is a very important system. Also, inspection techniques for semiconductor wafer production are required to ensure high precision and fast inspection. In order to achieve these objectives, parallel processing of the inspection algorithm is essentially needed. In this paper, we propose the GPU (Graphical Processing Unit)-based parallel processing algorithm for the fast inspection of semiconductor wafers. The proposed algorithm is implemented on GPU boards made by NVIDIA Company. The defect detection performance of the proposed algorithm implemented on the GPU is the same as if by a single CPU, but the execution time of the proposed method is about 210 times faster than the one with a single CPU.

Accelerating the Sweep3D for a Graphic Processor Unit

  • Gong, Chunye;Liu, Jie;Chen, Haitao;Xie, Jing;Gong, Zhenghu
    • Journal of Information Processing Systems
    • /
    • 제7권1호
    • /
    • pp.63-74
    • /
    • 2011
  • As a powerful and flexible processor, the Graphic Processing Unit (GPU) can offer a great faculty in solving many high-performance computing applications. Sweep3D, which simulates a single group time-independent discrete ordinates (Sn) neutron transport deterministically on 3D Cartesian geometry space, represents the key part of a real ASCI application. The wavefront process for parallel computation in Sweep3D limits the concurrent threads on the GPU. In this paper, we present multi-dimensional optimization methods for Sweep3D, which can be efficiently implemented on the finegrained parallel architecture of the GPU. Our results show that the overall performance of Sweep3D on the CPU-GPU hybrid platform can be improved up to 4.38 times as compared to the CPU-based implementation.

Software-based Real-time GNSS Signal Generation and Processing Using a Graphic Processing Unit (GPU)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권3호
    • /
    • pp.99-105
    • /
    • 2014
  • A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

GPU 병렬성을 이용한 정보 검색 시스템의 성능 개선 (Improving the Performance of Information Retrieval System by using GPU Parallelism)

  • 박일남;배병걸;임은진;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.83-84
    • /
    • 2011
  • 정보 검색 시스템에서 사용되고 있는 벡터 공간 모델은 벡터 유사도 계산 속도에 따라 전체 시스템의 성능에 많은 영향을 미친다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 GPU(Graphic Processing Unit)를 이용하는 CUDA프레임워크에서 병렬처리 연산을 구현하였으며, CPU(Central Processing Unit) 환경에서의 연산 속도와 비교했을 때 최대 15배의 성능 향상 효과가 있음을 확인하였다.

  • PDF

GPU를 이용한 Gaussian Hole-Filling Algorithm 가속 (Accelerating Gaussian Hole-Filling Algorithm using GPU)

  • 박준호;한탁돈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.79-82
    • /
    • 2012
  • 3차원 멀티미디어 서비스에 대한 관심이 높아짐에 따라 관련 연구들이 현재 다양하게 논의되고 있다. Stereoscopy영상을 생성하기 위한 기존의 방법으로는 두 대의 촬영용 카메라를 일정한 간격으로 띄워놓고 피사체를 촬영한 후 해당 좌시점과 우시점을 생성하는 방법을 이용하였다. 하지만 이는 영상 대역폭의 부담을 가져오게 된다. 이를 해결하기 위하여 Depth정보와 한 장의 영상을 이용한 DIBR(Depth Image Based Rendering) Algorithm에 대한 연구가 많이 이루어지고 있다. 그중 Gaussian Depth Map을 이용한 Hole-Filling 방법은 DIBR에서 가장 자연스러운 결과를 보여주지만 다른 DIBR Algorithm들에 비해 속도가 현저히 느리다는 단점이 있다. 본 논문에서는 영상 생성의 고속화를 위해 GPU를 이용한 Gaussian Hole-Filling Algorithm의 병렬처리 구조를 제안하고 이를 이용한 DIBR Algorithm 생성과정을 제시한다.

  • PDF

저가의 비전 기반 트래킹 시스템을 이용한 그림 툴 (Drawing Tool with Vision-Based Tracking System)

  • 이주영;허혜정;박미정;이선규;서민영;유주희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.295-296
    • /
    • 2012
  • 그림 툴은 실시간 비디오 영상 스트림과 트래킹 시스템을 통해 사용자의 손가락 움직임의 입력을 받아 가상의 오브젝트들을 그려서 보여주는 툴이다. 핵심개발기술은 병렬처리언어인 CUDA사용하여 개발된 저가의 비전 기반 트래킹 시스템이다. 저가의 트래킹 시스템과 그림툴의 설계, 구현, 앞으로의 발전 방향에 대해 설명한다.

  • PDF

Computationally Efficient Implementation of a Hamming Code Decoder Using Graphics Processing Unit

  • Islam, Md Shohidul;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.198-202
    • /
    • 2015
  • This paper presents a computationally efficient implementation of a Hamming code decoder on a graphics processing unit (GPU) to support real-time software-defined radio, which is a software alternative for realizing wireless communication. The Hamming code algorithm is challenging to parallelize effectively on a GPU because it works on sparsely located data items with several conditional statements, leading to non-coalesced, long latency, global memory access, and huge thread divergence. To address these issues, we propose an optimized implementation of the Hamming code on the GPU to exploit the higher parallelism inherent in the algorithm. Experimental results using a compute unified device architecture (CUDA)-enabled NVIDIA GeForce GTX 560, including 335 cores, revealed that the proposed approach achieved a 99x speedup versus the equivalent CPU-based implementation.

고속 컬러 좌표계 변환을 위한 병렬 프로그래밍 (Parallel programming for high-speed color space conversion)

  • 최상근;손채봉
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.142-145
    • /
    • 2015
  • YUV 파일을 RGB 형태의 color space 로 변환하는 과정은 엄청난 연산으로 많은 시간이 소요된다. 이런 문제를 다양한 방법을 이용하여 속도 감소율을 확인할 것이다. 처음으로 기본 소스코드의 소요시간을 기준으로 삼기 위하여 최적화와 병렬프로그래밍을 사용하지 않고 프로그램을 설계하였다. 최적화와 병렬프로그래밍 단계를 진행하였을 때 C언어로 구현 된 최적화되기 전과 최종적으로 CUDA 기반의 병렬프로그래밍을 사용한 함수를 비교해보았을 때 속도의 증가율이 575%로 엄청난 속도의 차이를 확인할 수 있다. 이와 같은 기술을 영상을 다루는 모든 분야에서 처리속도가 증가함에 따라 효과적인 작업을 기대해 볼 수 있다.

  • PDF

다중 GPU 기반의 고속 다시점 깊이맵 생성 방법 (Multi-GPU based Fast Multi-view Depth Map Generation Method)

  • 고은상;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.236-239
    • /
    • 2014
  • 3차원 영상을 제작하기 위해서는 여러 시점의 색상 영상과 함께 깊이 정보를 필요로 한다. 하지만 깊이 정보를 얻을 때 사용하는 ToF 카메라는 해상도가 낮으며 적외선 신호의 주파수 문제 때문에 최대 3대까지 사용할 수 있다. 따라서 깊이 정보를 색상 영상과 함께 사용하기 위해서 깊이 정보의 업샘플링이 필수적이다. 업샘플링은 깊이 정보를 색상 카메라 위치로 3차원 워핑하고 결합형 양방향 필터(joint bilateral filter, JBF)를 사용하여 빈 영역을 채우는 방법으로 진행된다. 업샘플링은 오랜 시간이 소요되지만 그래픽스 프로세싱 유닛(graphics processing units, GPU)를 이용하여 빠르게 수행될 수 있다. 본 논문에서는 다중 GPU의 병렬 수행을 통하여 빠르게 다시점 깊이맵을 생성할 수 있는 방법을 제안한다. 다중 GPU 병렬 수행은 범용 목적 GPU(general purpose computing on GPU, GPGPU) 중의 하나인 CUDA를 이용하였으며, 본 논문에서 제안된 방법을 이용하여 3개의 GPU 사용한 실험 결과 초당 35 프레임의 다시점 깊이맵을 생성했다.

  • PDF