본 논문은 호스트(PC) 기반의 직렬처리 방식으로 도로영역 추출 방식에 디바이스(Graphic Card) 기반의 병렬 처리 방식을 추가함으로써 보다 향상된 처리 속도를 가지는 도로영역검출을 제안하였다. OpenCV CUDA는 기존의 OpenCV와 CUDA를 연동하여 병렬 처리 방식의 많은 함수들을 지원한다. 또한 OpenCV와 CUDA 연동 시 환경 설정이 완료된 OpenCV CUDA 함수들은 사용자의 디바이스(Graphic Card) 사양에 최적화된다. 따라서 OpenCV CUDA 사용은 알고리즘 검증 및 시뮬레이션 결과 도출의 용이성을 제공한다. 제안된 방법은 OpenCV CUDA 와 NVIDIA GeForce GTX 560 Ti 모델의 그래픽 카드를 사용하여 기존 방식보다 3.09배 빠른 처리 속도를 가짐을 실험을 통해 검증한다.
본 논문에서는 QEMU와 GPGPU-Sim에 기반하여 비x86 플랫폼을 위한 CUDA 시뮬레이션 프레임워크를 제안한다. 기존 CPU-GPU 이종 컴퓨팅 시뮬레이터는 x86 CPU 모델만을 지원하거나 CUDA를 지원하지 않는 한계를 가진다. 제안된 시뮬레이터는 이러한 문제를 해결하기 위해 x86을 포함하여 비x86 CPU 모델을 지원 가능한 QEMU와 CUDA를 지원하는 GPU 시뮬레이터인 GPGPU-Sim을 통합하였다. 이를 통해 비x86 기반의 CUDA 컴퓨팅 환경을 시뮬레이션할 수 있도록 하였다.
In this paper, particle swarm optimization(PSO) is newly implemented by CUDA(Compute Unified Device Architecture) and is applied to function optimization with several benchmark functions. CUDA is not CPU but GPU(Graphic Processing Unit) that resolves complex computing problems using parallel processing capacities. In addition, CUDA helps one to develop GPU softwares conveniently. Compared with the optimization result of PSO executed on a general CPU, CUDA saves about 38% of PSO running time as average, which implies that CUDA is a promising frame for real-time optimization and control.
Objectives: This study aimed to investigate the correlation between adolescents' dietary safety management competency, value recognition, efficacy, and competency of convergence using the dietary area (CUDA). Methods: Data were collected from 480 middle and high school students in Daegu, Gyeongbuk and Seoul, Gyeonggi using a self-administered five-point Likert scale questionnaire from May to July 2021. A questionnaire was used to investigate dietary safety management competency, awareness of convergence, recognition of the benefits, efficacy, and competency of CUDA. Results: We conducted factor, reliability, correlation, and regression analyses using SPSS 25. The average scores for each factor were: dietary significance (3.68); dietary safety management knowledge (3.34); food selection and cooking (3.72); nutrition management (3.38); weight management (3.28); risk dietary management (3.13); CUDA interest (2.98); convergence necessity (3.50); benefits in specialized areas (3.31); benefits in everyday life (3.48); efficacy of science and technology convergence (3.35); convergence efficacy with humanities, social science, and arts (3.31); and CUDA competency (3.41). The score for interest in CUDA was lower than that for the recognition of CUDA benefits. Significant positive correlations were observed between all factors except between risk dietary management and both nutrition and weight management (P < 0.01). Interest in CUDA and recognition of the need for convergence exhibited a positive and significant effect on all factors of the perception of CUDA benefits and efficacy. The subgroup factors of dietary safety management competency and the recognition of CUDA had a positive effect on the CUDA competency (P < 0.001, R2= 0.58). Conclusions: Strengthening dietary safety management competency and increasing the awareness of CUDA can enhance adolescents' convergence competency. Therefore, CUDA and targeted education must be actively promoted among adolescents.
GPU(Graphics Processing Unit)는 범용 CPU와는 달리 다수코어 스트리밍 프로세서(manycore streaming processor) 형태로 특화되어 발전되어 왔으며, 최근 뛰어난 병렬 처리 연산 능력으로 인하여 점차 많은 영역에서 CPU의 역할을 대체하고 있다. 이러한 추세에 따라 최근 NVIDIA 사에서는 GPGPU(General Purpose GPU) 아키텍처인 CUDA(Compute Unified Device Architecture)를 발표하여 보다 유연한 GPU 프로그래밍 환경을 제공하고 있다. 일반적으로 CUDA API를 사용한 프로그래밍 작업시 GPU의 계산구조에 관한 여러 가지 요소들에 대한 특성을 정확히 파악해야 효율적인 병렬 소프트웨어를 개발할 수 있다. 본 논문에서는 다양한 실험과 시행착오를 통하여 획득한 CUDA 프로그래밍에 관한 최적화 기법에 대하여 설명하고, 그러한 방법들이 프로그램 수행의 효율에 어떠한 영향을 미치는지 알아본다. 특히 특정 예제 문제에 대하여 효과적인 계층 구조 메모리의 접근과 코어 활성화 비율(occupancy), 지연 감춤(latency hiding) 등과 같이 성능에 영향을 미치는 몇 가지 규칙을 실험을 통해 분석해봄으로써, 향후 CUDA를 기반으로 하는 효과적인 병렬 프로그래밍에 유용하게 활용할 수 있는 구체적인 방안을 제시한다.
Although multi-frame super resolution algorithm has many merits but it demands too much calculation time. Researches have shown that image processing time can be reduced using a CUDA(Compute unified device architecture) which is one of GPGPU(General purpose computing on graphics processing unit) models. In this paper, we show that the processing time of multi-frame super resolution algorithm can be reduced by employing the CUDA. It was applied not to the whole parts but to the largest time consuming parts of the program. The simulation result shows that using a CUDA can reduce an operation time dramatically. Therefore it can be possible that multi-frame super resolution algorithm is implemented in real time by using libraries of image processing algorithms which are made by a CUDA.
그래픽 처리 장치(GPU: Graphic Processing Units)는 그래픽 처리에 특화된 수많은 산술논리연산자 (ALU: Arithmetic Logic Unit)와 이에 관련된 인스트럭션Instruction)으로 인해 중앙 처리 장치(CPU: Central Processing Units) 보다 훨씬 빠른 계산 처리를 수행할 수 있다. 최근에는 FORTRAN에 의해 구현된 많은 수치모형들이 현실적인 모델링 방법의 발달로 인해 더 많은 계산량과 계산시간을 필요로 한다. 이 연구에서는 GPU 상의 범용 계산GPGPU : General-Purpose computing on Graphics Processing Units) 기반 운동파 강우유출모형(Kinematic Wave Rainfall-Runoff Model)이 CUDA(Compute Unified Device Architecture) FORTRAN을 사용하여 구현되었다. CUDA FORTRAN 운동파 강우유출모형의 계산 결과는 검증된 CPU 기반 운동파 강우유출모형의 계산 결과와 비교하여 검증되었으며, 잘 일치함을 보여 주었다. CUDA FORTRAN 운동파 강우유출모형은 CPU 기반 모형에 비해 약 20 배 더 빠른 계산 시간을 보였다. 또한 계산 영역이 커짐에 따라 CPU 버전에 비해 CUDA FORTRAN 버전의 계산 효율이 향상되었다.
초고해상도 UHD($096{\times}2160$) 게임 영상의 메모리 대역폭 요구량은 기하급수적으로 늘어난다. 본 논문에서는 화질 저하 없이 메모리 대역폭 문제를 해결하기 위하여 CUDA 환경에서 비트 병렬 파이프라인을 지원하는 논문 [4]의 DDPCM-GR 압축 알고리즘을 변형한 DPCM-GR 방식을 적용한 무손실 압축을 구현하였다. CUDA 공유메모리 사용을 통한 효율성을 증대하였으며, paged-locked 호스트 메모리 비동기 전송을 통한 커널과 데이터 전송 중첩의 다양한 구성을 구현하였다. 실험을 통하여 CPU 방식에 비하여 최대 31.3배 속도 향상을 이루었으며, 비동기 전송 구성의 변화를 통하여 최대 30.3% 수행 시간이 감소하였다.
본 논문에서는 여러 대의 Microsoft Kinect 와 NVidia 사의 GPGPU 라이브러리 CUDA 를 사용하여 실시간 Free Viewpoint TV System 을 제안한다. Kinect 로부터 얻어진 컬러 및 깊이 영상을 통하여 두 카메라 사이의 가상시점에서 영상을 실시간으로 출력하는 시스템을 설계한다. 이 과정에서 많은 연산량을 요구하는 좌표계 변환 과정과 IR 패턴의 간섭문제를 해결하기 위해 사용되는 Nearest Neighbor 홀 채움 방식을 CUDA 를 이용해 병렬화시켰다. 실험 결과 CUDA 를 이용해 구성한 시스템이 기존의 CPU 만을 이용해 구성한 시스템보다 같은 시간 동안 더 많은 합성영상을 만들 수 있었다.
본 연구에서는 CUDA(Compute Unified Device Architecture) 포트란을 이용하여 확산파 강우 유출모형을 개발하였다. CUDA 포트란은 그래픽 처리 장치(Graphic Processing Unit: GPU)에서 수행하는 병렬 연산 알고리즘을 포트란 언어를 사용하여 작성할 수 있도록 하는 GPU상의 범용계산(General-Purpose Computing on Graphics Processing Units: GPGPU) 기술이다. GPU는 그래픽 처리 작업에 특화된 다수의 산술 논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 이에 따라, CUDA 포트란기반 확산파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시킬 수 있다. 분포형모형의 지배방정식은 확산파모형과 Green-Ampt모형으로 구성되었고, 확산파모형은 유한체적법을 이용하여 이산화 하였다. CUDA 포트란기반 확산파모형의 정확성은 기존 연구된 수리실험 결과 및 CPU기반 강우유출모형과 비교하였으며, 연산소요시간에 대한 효율성은 CPU기반 확산파모형과 비교하였다. 그 결과 CUDA 포트란기반 확산파모형의 결과는 수리실험 결과 및 CPU기반 강우유출모형의 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반 확산파모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.