• Title/Summary/Keyword: CU(Coding Unit)

Search Result 54, Processing Time 0.03 seconds

Fast Prediction Mode Decision in HEVC Using a Pseudo Rate-Distortion Based on Separated Encoding Structure

  • Seok, Jinwuk;Kim, Younhee;Ki, Myungseok;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.807-817
    • /
    • 2016
  • A novel fast algorithm is suggested for a coding unit (CU) mode decision using pseudo rate-distortion based on a separated encoding structure in High Efficiency Video Coding (HEVC). A conventional HEVC encoder requires a large computational time for a CU mode prediction because prediction and transformation procedures are applied to obtain a rate-distortion cost. Hence, for the practical application of HEVC encoding, it is necessary to significantly reduce the computational time of CU mode prediction. As described in this paper, under the proposed separated encoder structure, it is possible to decide the CU prediction mode without a full processing of the prediction and transformation to obtain a rate-distortion cost based on a suitable condition. Furthermore, to construct a suitable condition to improve the encoding speed, we employ a pseudo rate-distortion estimation based on a Hadamard transformation and a simple quantization. The experimental results show that the proposed method achieves a 38.68% reduction in the total encoding time with a similar coding performance to that of the HEVC reference model.

Early Coding Unit-Splitting Termination Algorithm for High Efficiency Video Coding (HEVC)

  • Goswami, Kalyan;Kim, Byung-Gyu;Jun, Dongsan;Jung, Soon-Heung;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.407-417
    • /
    • 2014
  • A new-generation video coding standard, named High Efficiency Video Coding (HEVC), has recently been developed by JCT-VC. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. However, one the most important challenges in HEVC is time complexity. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. This provides a high encoding quality, but also causes computational complexity. We focus on a reduction scheme of the computational complexity and propose a new approach that can terminate the quadtree-based structure early, based on the RD costs of the parent and current levels. Our proposed algorithm is compared with HEVC Test Model version 10.0 software and a previously proposed algorithm. Experimental results show that our algorithm provides a significant time reduction for encoding, with only a small loss in video quality.

CU-based Merge Candidate List Construction Method for HEVC (HEVC를 위한 CU기반 병합 후보 리스트 구성 방법)

  • Kim, Kyung-Yong;Kim, Sang-Min;Park, Gwang-Hoon;Kim, Hui-Yong;Lim, Sung-Chang;Lee, Jin-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.422-425
    • /
    • 2012
  • This paper proposes the CU-based approach for merge candidate list construction for providing reduced complexity and improved parallelism compared to the PU-based one. In the proposed method, a CU can have only one merge candidate list. So, Only one common merge candidate list is used for all PUs in a CU regardless of the PU partition type. The simulation results of proposed method showed that the encoder computational complexity was decreased by 3% to 6% and the decoder computational complexity was negligible change with the penalty of roughly 0.2% - 0.5% coding loss. The proposed method has several advantages: it provides simpler design, reduced complexity, and improved parallelism.

Fast Depth Video Coding with Intra Prediction on VVC

  • Wei, Hongan;Zhou, Binqian;Fang, Ying;Xu, Yiwen;Zhao, Tiesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3018-3038
    • /
    • 2020
  • In the stereoscopic or multiview display, the depth video illustrates visual distances between objects and camera. To promote the computational efficiency of depth video encoder, we exploit the intra prediction of depth videos under Versatile Video Coding (VVC) and observe a diverse distribution of intra prediction modes with different coding unit sizes. We propose a hybrid scheme to further boost fast depth video coding. In the first stage, we adaptively predict the HADamard (HAD) costs of intra prediction modes and initialize a candidate list according to the HAD costs. Then, the candidate list is further improved by considering the probability distribution of candidate modes with different CU sizes. Finally, early termination of CU splitting is performed at each CU depth level based on the Bayesian theorem. Our proposed method is incorporated into VVC intra prediction for fast coding of depth videos. Experiments with 7 standard sequences and 4 Quantization parameters (Qps) validate the efficiency of our method.

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Fast CU Termination Method for Fast Encoding in JEM (JEM 부호화 속도 향상을 위한 고속 CU 결정 방법)

  • Choi, Hansol;Lee, Jongsoek;Marzuki, Ismail;Park, Seanae;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.180-181
    • /
    • 2018
  • 본 논문에서는 JEM(Joint Exploration Model)의 부호화기 계산 복잡도 감소를 위한 CU 조기 결정 방법을 제시한다. 기존의 JEM 의 경우 현재 CU(Coding Unit)의 RDO(Rate Distortion Optimization)를 통한 최적의 예측 모드가 Merge SKIP 모드이고 BT(Binary Tree)의 깊이가 2 또는 3 이상일 때 CU 결정을 조기 종료한다. 제안하는 방법에서는 현재 CU 의 최적의 예측모드가 Merge SKIP 이고 BT 일 경우 통계적 분석을 통한 왜곡 값, CU 샘플 수, 시간적 계층 순서, 양자화 파라미터를 고려한 문턱 값을 이용하여 CU 를 조기 결정한다. 실험결과로써 제안하는 방법이 JEM 7.1 대비 Y, U, V 각각 평균 0.86%, 0.08%, 0.18%의 BD-rate 손실이 발생하고 평균 16% 부호화 속도를 개선시킨다.

  • PDF

HEVC-encoded Video Bit-stream Analyzer (HEVC 기술로 부호화된 비디오 비트스트림 분석기)

  • Jung, Soon-Heung;Jun, DongSan;Kim, Younhee;Seok, Jinwuk;Choi, Jin Soo;Kwak, Jin Suk;Lee, MinSuk;An, Sangbu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.462-465
    • /
    • 2012
  • 본 논문에서는 HEVC 기술로 부호화된 비디오 비트스트림(HEVC 비트스트림)을 분석하고, 그 결과를 보여주는 방법에 대해서 제안한다.[1] HEVC 기술은 Coding Unit(CU), Prediction Unit(PU), Transform Unit(TU)을 기반으로 부호화가 이루어지므로 부호화 정보를 효과적으로 사용자에게 보여주기 위해서는 CU, PU, TU 를 기반으로 GUI(Graphic User Interface)가 디자인되어야 한다. 제안된 HEVC 비트스트림 분석기에서는 이러한 부호화 구조를 반영하여 사용자 친화적으로 HEVC 비트스트림의 부호화 정보를 편리하게 확인할 수 있도록 하였다.

  • PDF

Fast CU Decision Algorithm using the Initial CU Size Estimation and PU modes' RD Cost (초기 CU 크기 예측과 PU 모드 예측 비용을 이용한 고속 CU 결정 알고리즘)

  • Yoo, Hyang-Mi;Shin, Soo-Yeon;Suh, Jae-Won
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2014
  • High Efficiency Video Coding(HEVC) obtains high compression ratio by applying recursive quad-tree structured coding unit(CU). However, this recursive quad-tree structure brings very high computational complexity to HEVC encoder. In this paper, we present fast CU decision algorithm in recursive quad-tree structure. The proposed algorithm estimates initial CU size before CTU encoding and checks the proposed condition using Coded Block Flag(CBF) and Rate-distortion cost to achieve the fast encoding time saving. And, intra mode estimation is also possible to be skipped using the CBF values acquired during the inter PU mode estimations. Experiment results shows that the proposed algorithm saved about 49.91% and 37.97% of encoding time according to the weighting condition.

A Study on the HEVC Video Encoder PMR Block Design (HEVC 비디오 인코더 PMR 블록 설계에 대한 연구)

  • Lee, Sukho;Lee, Jehyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.141-146
    • /
    • 2016
  • HEVC/H.265 is the latest joint video coding standard proposed by ITU-T SG 16 WP and ISO/IEC JTC 1/SC29/WG 11. In H.265, pictures are divided into a sequence of coding tree units(CTUs), and the CTU further is partitioned into multiple CUs to adapt to various local characteristics. Its coding efficiency is approximately two times high compared to previous standard H.264/AVC. However according to the size of extended CU(coding unit) and transform block, the hardware size of PMR(prediction/mode decision/reconstruction) block within video encoder is about 4 times larger than previous standard. In this study, we propose a new less complex hardware architecture of PMR block which has the most high complexity within encoder without any noticeable PSNR loss. Using this simplified block, we can shrink the overall size the H.265 encoder. For FHD image, it operates at clocking frequency of 300 MHz and frame rate of 60 fps. And also for the test image, the Bjøntegaard Delta (BD) bit rate increase about average 30 % in PMR prediction block, and the total estimated gate count of PMR block is around 1.8 M.

Parallel Method for HEVC Deblocking Filter based on Coding Unit Depth Information (코딩 유닛 깊이 정보를 이용한 HEVC 디블록킹 필터의 병렬화 기법)

  • Jo, Hyun-Ho;Ryu, Eun-Kyung;Nam, Jung-Hak;Sim, Dong-Gyu;Kim, Doo-Hyun;Song, Joon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.742-755
    • /
    • 2012
  • In this paper, we propose a parallel deblocking algorithm to resolve workload imbalance when the deblocking filter of high efficiency video coding (HEVC) decoder is parallelized. In HEVC, the deblocking filter which is one of the in-loop filters conducts two-step filtering on vertical edges first and horizontal edges later. The deblocking filtering can be conducted with high-speed through data-level parallelism because there is no dependency between adjacent edges for deblocking filtering processes. However, workloads would be imbalanced among regions even though the same amount of data for each region is allocated, which causes performance loss of decoder parallelization. In this paper, we solve the problem for workload imbalance by predicting the complexity of deblocking filtering with coding unit (CU) depth information at a coding tree block (CTB) and by allocating the same amount of workload to each core. Experimental results show that the proposed method achieves average time saving (ATS) by 64.3%, compared to single core-based deblocking filtering and also achieves ATS by 6.7% on average and 13.5% on maximum, compared to the conventional uniform data-level parallelism.