• Title/Summary/Keyword: CT simulator

Search Result 80, Processing Time 0.03 seconds

The Broad-beam CT Image Reconstruction from Simulator Images (모의치료(Simulation) 영상을 이용한 Broad-beam CT 영상 구현)

  • Yi, Byong-Yong
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • Purpose : To generate the axial, coronal and sagittal images from conventional simulation images, as a preliminary study of broad-beam simulator CT. Methods and Materials : Volumetric filtered back-projection was performed using 90 sheets of films from conventional simulator for every $4^{\circ}$ gantry angle. Two mAs exposure condition for 120kvp beam qualify at SFD 140cm was given to each film. Outside the silhouette portion was removed and scatter component was deconvolved before back-projection. Results : The axial, the sagittal and the coronal images with same spatial resolutions over all direction could be obtained. But image quality was very poor. Conclusion : CT images could be obtained using broad-beam. Scatter deconvolution technique was effective for this reconstruction. The fact that same spatial resolutions over all direction tells us the possibility of application of this technique to DRR or Simulator-CT. But the quality of image should be improved for clinical application practically.

  • PDF

Proposal of CT Simulator Quality Assurance Items (전산화단층 모의치료장치의 정도관리 항목 제안)

  • Kim, Yon-Lae;Yoon, Young-Woo;Jung, Jae-Yong;Lee, Jeong-Woo;Chung, Jin-Beom
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.367-373
    • /
    • 2021
  • A quality assurance of computed tomography(CT) have done seven items that were water attenuation coefficient, noise, homogeneity, spatial resolution, contrast resolution, slice thickness, artifact using by standard phantom. But there is no quality assurance items and methods for CT simulator at domestic institutions yet. Therefore the study aimed to access the CT dose index(CTDI), table tilting, image distortion, laser accuracy, table movement accuracy and CT seven items for CT simulator quality assurance. The CTDI at the center of the head phantom was 0.81 for 80 kVp, 1.55 for 100 kVp, 2.50 for 120 mm, 0.22 for 80 kVp at the center of the body phantom, 0.469 for 100 kVp, and 0.81 for 120 kVp. The table tilting was within the tolerance range of ±1.0° or less. Image distortion had 1 mm distortion in the left and right images based on the center, and the laser accuracy was measured within ±2 mm tolerance. The purpose of this study is to improve the quality assurance items suitable for the current situation in Korea in order to protect the normal tissues during the radiation treatment process and manage the CT simulator that is implemented to find the location of the tumor more clearly. In order to improve the accuracy of the CT simulator when looking at the results, the error range of each item should be small. It is hoped that the quality assurance items of the CT simulator will be improved by suggesting the quality assurance direction of the CT simulator in this study, and the results of radiation therapy will also improve.

Evaluation of CT Number Difference between Radiation Therapeutic CT Simulator and Conventional CT (방사선치료용 CT simulator와 진단용 CT의 구조 차이에 의한 CT number의 비교 평가)

  • Seo, Jeong Min;Rhim, Jae Dong;Kim, Chan Hyeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • The purpose in this study is to investigate CT number difference between conventional CT and CT simulator. It shows good correlation in CT number on the muscle, bone, and air. However, in the liver, lungs and water, the low correlation was detected. This result can become the good index for the direction of the distribution of dose difference research between CT equipment for using the computerized radiation therapy planning system.

The Usefulness of Integrated PET/CT Simulator for Non-Small Cell Lung Cancer Using the F-18 Fluoro-2-deoxyglucose (FDG) (포도당 유도체 불소화합물(FDG)을 이용한 비소세포폐암의 Integrated PET/CT 전산화 모의치료기에 대한 유용성 평가)

  • Na, Jong Eok;Suh, Jeong Nam;Kim, Jin Soo;Kim, Dae Seob;Hong, Dong Ki;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: To evaluate the usefulness of Integrated PET/CT and compare the gloss tumor volume (GTV) identified on CT, PET, PET/CT to that obtained from fluorodeoxyglucose (FDG). Materials and Methods: This experimental study was obtained using GE Discovery 690 (General Electric Healthcare, Milwaukee, MI, USA) PET/CT simulator with Gammex Laser System for five non-small cell lung cancer (NSCLC) patients. In order to increase the reproducibility of the patient setup, We have to fixed to patients using the Extended Wing Board. GTV delineation was painted using the EclipseTM ver.10 contouring program for CT, PET, PET/CT images. And then, We were to compare the changes in the GTV. Results: These results are drawn from 5 patients who have atelectasis or pneumonitis. Compared to CT defined GTV, PET was decreased by 10.5%, 11.8% and increased by 67.9%, 220%, 19.4%. PET/CT was decreased by 7.7%, 6.7%, 28% and increased by 232%, 24%. Conclusion: We were able to determine the usefulness of PET/CT simulator for NSCLC. PET/CT simulator in radiation therapy is useful to define the target volume and It is possible to delineate Objective and accurate target volume. It seems to be applicable to other areas in the near future.

  • PDF

Quality assurance for computed-tomography simulator : Report of the AAPM Radiation Therapy Committee Task Group No.66 (Report of the AAPM Radiation Therapy Committee의 Task Group No.66에 의한 전산화 단층촬영 모의치료기의 정도 관리)

  • Lee, Yun-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.41-43
    • /
    • 2005
  • Purpose : Wish to present degree management process that is efficient confirm radiation treatment exclusive use CT simulator's Q.A item that become Q.A and Differentiation of diagnosis area that present Report of the AAPM Task Group No.66 using Q.A tool that produce itself and secure safe and correct CT-simulation process and equip convenience. Method and material : Manufacture CT simulator's Q.A tool on source and confirm virtue between isocenter of wall laser system, patient table, CT scanner's imaging plane that present in Report of the AAPM Task Group No.66 by daily publication unit. Result : Confirmed measured value from Report of the AAPM Task Group No.66 to confirmation of presenting degree management item in wall laser's ${\pm}2mm$, table's ${\pm}2mm$, imaging plane's ${\pm}2mm$ tolerance extent. Conclusion : There is unconfirmed item from CT-simulation process for therapy to CT Q.A protocol of existent diagnosis area, premising suitable degree management of radiation treatment exclusive use CT-simulator equipment confirming presenting Q.A item in Report of the AAPM Task Group No.66 safe and correct CT-simulation process guarantee can

  • PDF

Derivation of the Effective Energy Calculation Formula of the X-ray Beam Generated by the CT Simulator (CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도)

  • Kim, Jong-Eon;Lee, Sang-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.869-875
    • /
    • 2021
  • The purpose of this study is to derive a formula for calculating the effective energy of an X-ray beam generated by a CT simulator. Under 90, 120, and 140 kVp X-ray beams, the CT number calibration insert part of the AAPM CT performance phantom was scanned 5 times with a CT simulator. The CT numbers of polyethylene, polystyrene, water, nylon, polycarbonate, and acrylic were measured for each CT slice image. The average value of CT number measured under a single tube voltage and the linear attenuation coefficients corresponding to each photon energy calculated from the data of the National Institute of Standards and Technology were linearly fitted. Among the obtained correlation coefficients, the photon energy having the maximum value was determined as the effective energy. In this way, the effective energy of the X-ray beam generated at each tube voltage was determined. By linearly fitting the determined effective energies(y) and tube voltages(x), y=0.33026x+30.80263 as an effective energy calculation formula was induced.

Acceptance Test and Clinical Commissioning of CT Simulator

  • An, Hyun Joon;Son, Jaeman;Jin, Hyeongmin;Sung, Jiwon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • This study examined the clinical use of two newly installed computed tomography (CT) simulators in the Department of Radiation Oncology. The accreditation procedure was performed by the Korean Institute for Accreditation of Medical Imaging. An Xi R/F dosimeter was used to measure the CT dose index for each plug of the CT dose index phantom. Image qualities such as the Hounsfield unit (HU) value of water, noise level, homogeneity, existence of artifacts, spatial resolution, contrast, and slice thickness were evaluated by scanning a CT performance phantom. All test items were evaluated as to whether they were within the required tolerance level. CT calibration curves-the relationship between CT number and relative electron density-were obtained for dose calculations in the treatment planning system. The positional accuracy of the lasers was also evaluated. The volume CT dose indices for the head phantom were 22.26 mGy and 23.70 mGy, and those for body phantom were 12.30 mGy and 12.99 mGy for the first and second CT simulators, respectively. HU accuracy, noise, and homogeneity for the first CT simulator were -0.2 HU, 4.9 HU, and 0.69 HU, respectively, while those for second CT simulator were 1.9 HU, 4.9 HU, and 0.70 HU, respectively. Five air-filled holes with a diameter of 1.00 mm were used for assessment of spatial resolution and a low contrast object with a diameter of 6.4 mm was clearly discernible by both CT scanners. Both CT simulators exhibited comparable performance and are acceptable for clinical use.

Manufacture of Versatile Phantom for the Daily Quality Assurance of Radiation Therapy Equipments (방사선치료 장비들의 매일 정도관리를 위한 다용도 모형의 제작)

  • Cha, Dong-Soo;Lee, Jae-Seung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • We examined the accuracy and efficiency of phantom by applying the designed phantom in order to check daily quality assurance easily by objective criteria and to confirm daily quality assurance of linear accelerator, simulator, and CT-simulator. The results of 10 weeks of linear accelerator output dose using American Association of Physicists in Medicine(AAPM) daily quality assurance guide were measured within ${\pm}1%$ of error. Mechanical check of laser alignment, optical distance indicator(ODI), CT scanner laser and alignment of gantry lasers with the center of imaging plane were measured within ${\pm}1mm$. Daily average working time for daily quality assurance of radiation therapy equipments was 38 minutes. The designed phantom was easy to install and daily quality assurance was possible with only one installation. The aspects reproducibility and efficiency as well as accuracy of quality assurance were excellent.

  • PDF

An Efficient Correction Process of CT-Simulator Couch with Current Diagnostic CT Scanners (진단용 CT-모의치료기 테이블의 효율적인 교정 방법)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Cho, Jung-Keun;Moon, Seong-Kwon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.254-261
    • /
    • 2009
  • This study suggested that the table of CT-simulator and the laser alignment system using diagnostic CT scanner have an efficient method for improvement in alignment between the planned target center of traverse image with CT scanner. It was conducted on the daily QA when presented in the AAPM TG66 with correcting the laser alignment system using geometric trigonometric functions and investigated the effectiveness of correction methods as compared with those before and after correction. Before correction error was 3.82mm between the planned target center of image, the table longitudinal axis was twisted with 0.436o. The laser alignment system using geometric trigonometric functions in after correction was satisfied with tolerance limits of ${\pm}2mm$ when occurred about 0.7mm in errors between the planned target center. The table correction to satisfy the geometric accuracy is very inefficient over against the time and economic loss as well as technical limits in the case of application as only radiation therapy associated with CT-simulator with diagnostic CT scanner in use. But, the method which corrects the laser alignment system is economic and relatively simple with possibility of getting well geometric accuracy and we suppose that it is efficient method for applying in the clinic.

AI-based Automatic Spine CT Image Segmentation and Haptic Rendering for Spinal Needle Insertion Simulator (척추 바늘 삽입술 시뮬레이터 개발을 위한 인공지능 기반 척추 CT 이미지 자동분할 및 햅틱 렌더링)

  • Park, Ikjong;Kim, Keehoon;Choi, Gun;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.316-322
    • /
    • 2020
  • Endoscopic spine surgery is an advanced surgical technique for spinal surgery since it minimizes skin incision, muscle damage, and blood loss compared to open surgery. It requires, however, accurate positioning of an endoscope to avoid spinal nerves and to locate the endoscope near the target disk. Before the insertion of the endoscope, a guide needle is inserted to guide it. Also, the result of the surgery highly depends on the surgeons' experience and the patients' CT or MRI images. Thus, for the training, a number of haptic simulators for spinal needle insertion have been developed. But, still, it is difficult to be used in the medical field practically because previous studies require manual segmentation of vertebrae from CT images, and interaction force between the needle and soft tissue has not been considered carefully. This paper proposes AI-based automatic vertebrae CT-image segmentation and haptic rendering method using the proposed need-tissue interaction model. For the segmentation, U-net structure was implemented and the accuracy was 93% in pixel and 88% in IoU. The needle-tissue interaction model including puncture force and friction force was implemented for haptic rendering in the proposed spinal needle insertion simulator.