• Title/Summary/Keyword: CT number accuracy

Search Result 61, Processing Time 0.029 seconds

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

Performance measurements of Positron Emission Tomographs using NEMA NU 2-2007 (NU 2-2007을 이용한 PET/CT 성능평가)

  • An, Hye-Sun;Park, Hoon-Heu;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • PET/CT is a machine for imaging in vivo functions or metabolic activities after the administration of radiopharmaceuticals labeled with radioisotope emitting positrons in the body. Recently the number of PET/CT installed in Korean medical institutions is increasing rapidly. In response, the number of PET/CT tests to be used in the diagnosis and treatment of tumors is also increasing every year, and this is increasing the necessity for developing the methods of PET/CT performance evaluation and quality control. Among the test items for the performance evaluation and quality control of PET/CT suggested in NU 2-2007, this study examined spatial resolution test, sensitivity test, image quality, attenuation accuracy & scatter correction test, scatter fraction, count losses and randoms test and accuracy( correction for count losses and randoms).

  • PDF

Effect of Improving Accuracy for Effective Atomic number (EAN) and Relative Electron Density (RED) extracted with Polynomial-based Calibration in Dual-energy CT

  • Daehong Kim;Il-Hoon Cho;Mi-jo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1017-1023
    • /
    • 2023
  • The purpose of this study was to improve the accuracy of effective atomic number (EAN) and relative electron density (RED) using a polynomial-based calibration method using dual-energy CT images. A phantom composed of 11 tissue-equivalent materials was acquired with dual-energy CT to obtain low- and high-energy images. Using the acquired dual-energy images, the ratio of attenuation of low- and high-energy images for EAN was calibrated based on Stoichiometric, Quadratic, Cubic, Quartic polynomials. EAN and RED were extracted using each calibration method. As a result of the experiment, the average error of EAN using Cubic polynomial-based calibration was minimum. Even in the RED image extracted using EAN, the error of the Cubic polynomial-based RED was minimum. Cubic polynomial-based calibration contributes to improving the accuracy of EAN and RED, and would like to contribute to accurate diagnosis of lesions in CT examinations or quantification of various materials in the human body.

Efficiency Evaluation of CT Simulator QA Phantom (전산화 단층촬영 모의치료기 정도관리 팬텀의 유용성 평가)

  • Hwang, Se-Ha;Min, Je-Sun;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Purpose: The purpose is to evaluate efficiency of the CT simulator QA phantom manufactured for daily QA. Materials and Methods: We made holes ($1{\times}100{\times}1\;mm$) to verify accuracy between image and real measurement in polystyrene phantom and made 1 mm holes to verify table movement accuracy at superior and inferior 100 mm to the center of the phantom and inserted radiopacity material. To evaluate laser alignment, we made cross mark on the right and left side at phantom and to evaluate CT number accuracy we made 3 cylindrical holes and inserted equivalence material of bone, water, air in them. After CT scanning the phantom, We evaluated accuracy between image and real measurement, accuracy of table movement, laser, and CT number using exposed image. Results: It was measured that the accuracy between image and real measurement was ${\pm}0.3\;mm$, table movement accuracy was ${\pm}0.3\;mm$, laser accuracy was ${\pm}0.5\;mm$ from 7th January to 7th March in 2008 as within the reference point ${\pm}1\;mm$. In the CT number accuracy of bone was ${\pm}10\;HU$, air was ${\pm}5\;HU$, water was ${\pm}5\;HU$ as within the reference point is ${\pm}10\;HU$. Conclusion: We was able to perform CT simulator QA and laser equipment QA more conveniently and fast using manufactured phantom at the same time. We will be able to make more accurate treatment plan that added to QA procedures using images at previous daily QA.

  • PDF

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

A Study on Establishment of Basic Safety and Essential Performance Criteria of Mobile Computed Tomography (이동형 전산화단층촬영장치의 기본 안전 및 필수 성능 기준을 마련하기 위한 연구)

  • Kim, Eun Hye;Park, Hye Min;Kim, Jung Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.261-267
    • /
    • 2021
  • As the number of Coronavirus Disease-19 (COVID-19) patients increases in a global pandemic situation, the usefulness of mobile computed tomography (CT) is gaining attention. Currently, mobile CT follows the basic safety and essential performance evaluation criteria of whole-body or limited-view X-ray CT in order to obtain device approval and evaluation in the Republic of Korea. Unlike stationary CT, mobile CT is not operated in shielded areas but rather areas such as intensive care units, operating rooms, or isolation rooms. Therefore, it requires a different basic safety and essential performance evaluation standard than stationary CT. In this study, four derived basic safety evaluation criteria related to electrical, mechanical, and radiation safety were included (dose indication test, protection against stray radiation, safety measures against excessive X-rays, half-value layer measurement); and seven essential performance evaluation criteria were included (tube voltage accuracy, mAs accuracy, radiation dose reproducibility, CT number of water, noise, uniformity, and spatial resolution); total eleven basic safety and essential performance evaluation criteria were selected. This study aims to establish appropriate basic safety and essential performance evaluation criteria for simultaneously obtaining images with diagnostic value and reducing the exposure of nearby patients, medical staff, and radiologic technologists during the use of mobile CT.

Development of QA Phantom Prototype for Imaged Based Radiation Treatment System (영상기반 방사선 치료기기를 위한 QA 팬텀 시작품 개발)

  • Chang, Jin-A;Oh, Seoung-Jong;Jung, Won-Kyun;Jang, Hong-Suk;Kim, Hoi-Nam;Kang, Dae-Gyu;Lee, Doo-Hyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.120-124
    • /
    • 2008
  • In this study, we developed the protopype of QA phantom for image QA including an additional component for image based radiation treatment system. The new phantom considered two main parts: Image quality and fusion accuracy. Image quality part included for daily CT number linearity and spatial resolution, and fusion accuracy part designed to simulate a simple translation-rotation setting. The CT scans of the phantom obtained from conventional CT, MVCT of Tomotherapy unit, and both image sets were satisfied the recommendation of spatial resolution. This phantom was simple and efficient for daily imaging QA, and it is important to provide a new concept of verification of image registration.

  • PDF

Acceptance Test and Clinical Commissioning of CT Simulator

  • An, Hyun Joon;Son, Jaeman;Jin, Hyeongmin;Sung, Jiwon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • This study examined the clinical use of two newly installed computed tomography (CT) simulators in the Department of Radiation Oncology. The accreditation procedure was performed by the Korean Institute for Accreditation of Medical Imaging. An Xi R/F dosimeter was used to measure the CT dose index for each plug of the CT dose index phantom. Image qualities such as the Hounsfield unit (HU) value of water, noise level, homogeneity, existence of artifacts, spatial resolution, contrast, and slice thickness were evaluated by scanning a CT performance phantom. All test items were evaluated as to whether they were within the required tolerance level. CT calibration curves-the relationship between CT number and relative electron density-were obtained for dose calculations in the treatment planning system. The positional accuracy of the lasers was also evaluated. The volume CT dose indices for the head phantom were 22.26 mGy and 23.70 mGy, and those for body phantom were 12.30 mGy and 12.99 mGy for the first and second CT simulators, respectively. HU accuracy, noise, and homogeneity for the first CT simulator were -0.2 HU, 4.9 HU, and 0.69 HU, respectively, while those for second CT simulator were 1.9 HU, 4.9 HU, and 0.70 HU, respectively. Five air-filled holes with a diameter of 1.00 mm were used for assessment of spatial resolution and a low contrast object with a diameter of 6.4 mm was clearly discernible by both CT scanners. Both CT simulators exhibited comparable performance and are acceptable for clinical use.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.