• Title/Summary/Keyword: CT number

Search Result 595, Processing Time 0.033 seconds

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF

Noise Measurement by Percentage of Effective Linear Attenuation Coefficient of Water in CT Image of AAPM CT Performance Phantom (AAPM CT 성능 팬텀의 CT영상에서 물 유효선감쇠계수의 백분율에 의한 노이즈 측정)

  • Jong-Eon, Kim;Sang-Hun, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2022
  • The purpose of this study is to present a method of measuring noise by the percentage of effective line attenuation coefficient of water that can be used for quality control of CT image noise using AAPM CT performance phantom in clinical practice. In the CT images obtained by scanning the AAPM CT performance phantom with a 120 kVp CT X-ray beam, the mean CT number was measured for each pin and water in the CT number linearity insert part. The effective energy was determined as the photon energy with the largest correlation coefficient from the correlation coefficients of the linear regression analysis of the measured mean CT number for each pin and water and the linear attenuation coefficient for each photon energy. And for water and acrylic, the contrast scale was calculated as 0.000188 cm-1 · HU-1 from the measured mean CT number and effective line attenuation coefficient. Using the calculated contrast scale, the effective line attenuation coefficient of water, and the standard deviation measured in the water of the alignment pin part of the AAPM CT performance phantom, The noise measurement value by the percentage of effective line attenuation coefficient of water obtained 0.31 ~ 0.52% in the range of 100 ~ 300 mAs.

Determination of Effective Energy of CT X-ray beams (CT X-선 빔들의 유효에너지 결정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • The purpose of this study is to determine the effective energy of CT X-ray beams by using the CT slice images of a CT number calibration insert part in the AAPM CT performance phantom. The CT number calibration insert part in the AAPM CT performance phantom was scanned five times by using a CT canner for 80, 100 and 120 kVp X-ray beams. The average value of CT numbers of each pin were measured for each CT slice image. The correlation coefficients were obtained by linear fit between the average value of CT numbers measured and liner attenuation coefficient under different energy at each pin calculated from data of NIST. A photon energy corresponding to the maximum value of the obtained correlation coefficient was determined as an effective energy. As a result, the effective energy was 56, 62 and 66~67 keV, respectively, for 80, 100 and 120 kVp X-ray beams.

Changes in CT Number and Noise Level according to Pitch in Spiral Image Acquisition (나선형영상획득에서 Pitch에 따른 CT 감약계수와 잡음의 변화)

  • Kang, SungJin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.981-989
    • /
    • 2020
  • In this study, a self-made customized phantom was used to quantitatively measure the change in CT number and noise according to the change of pitch. In order to acquire an image using the phantom, the inside of the phantom was filled with sterile distilled water. Inside the glass tube, a solution obtained by diluting the ratio of normal saline and contrast medium to 100%(NS), 400:1, 200:1, 100:1, 50:1, respectively, was placed and imaged. At this time, the pitch was divided into steps of 0, 0.35, 0.7, 1.05, and 1.4 for each dilution ratio of the solution and imaged, respectively. One-way ANOVA analysis were performed to verify whether the mean of the CT number and noise values measured in all ROIs by dilution ratio showed a significant difference according to the change in pitch. As a result of the experiment, there was no statistically significant difference in the change of the CT number according to the change in the pitch for each dilution ratio, but the noise value tended to increase with the increase of the pitch, and showed a statistically significant difference. In the spiral image acquisition of CT, noise can be changed to a significant level depending on the pitch. Therefore, it will be necessary to set the quality evaluation items and criteria for CT images using the spiral image acquisition method.

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

Relationship between 18FDG Uptake Rate and CT Number in Fatty Liver on PET-CT (PET-CT 검사에서 지방간의 18FDG 섭취율과 CT Number의 관련성 연구)

  • Lee, Eun-Hyeng;Seok, Jong-Min;Jeon, Woo-Jin;Ko, Eun-Ju;Lee, Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.159-165
    • /
    • 2018
  • The purpose of this study is to provide the basic information for diagnosis and treatment of fatty liver by investigating the relationship of the body $^{18}FDG$ uptake and CT Number in patients with fatty liver. This study was conducted on patients who were admitted to the N hospital from January 2014 to October 2015 underwent PET-CT. This result, the probability of fatty liver was 5 times higher in male. The $^{18}FDG$ uptaking were increased by more than 1.000 times respectively in the Liver RT, Middle liver, Liver LT from patients with fatty liver (p <.05). And the CT Number were decreased by 0.93, 0.88, and 0.92 times respectively in Liver RT, Middle liver, Liver LT from patients with fatty liver (p <.05). In conclusion, significant changes of $^{18}FDG$ uptake rate and CT number according to fatty liver provide reliable information for diagnosis and treatment of fatty liver patients. And it can be used as a basic data for the study of fatty liver predictability.

Derivation of the Effective Energy Calculation Formula of the X-ray Beam Generated by the CT Simulator (CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도)

  • Kim, Jong-Eon;Lee, Sang-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.869-875
    • /
    • 2021
  • The purpose of this study is to derive a formula for calculating the effective energy of an X-ray beam generated by a CT simulator. Under 90, 120, and 140 kVp X-ray beams, the CT number calibration insert part of the AAPM CT performance phantom was scanned 5 times with a CT simulator. The CT numbers of polyethylene, polystyrene, water, nylon, polycarbonate, and acrylic were measured for each CT slice image. The average value of CT number measured under a single tube voltage and the linear attenuation coefficients corresponding to each photon energy calculated from the data of the National Institute of Standards and Technology were linearly fitted. Among the obtained correlation coefficients, the photon energy having the maximum value was determined as the effective energy. In this way, the effective energy of the X-ray beam generated at each tube voltage was determined. By linearly fitting the determined effective energies(y) and tube voltages(x), y=0.33026x+30.80263 as an effective energy calculation formula was induced.

Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

  • Oliveira, Matheus L.;Tosoni, Guilherme M.;Lindsey, David H.;Mendoza, Kristopher;Tetradis, Sotirios;Mallya, Sanjay M.
    • Imaging Science in Dentistry
    • /
    • v.44 no.4
    • /
    • pp.279-285
    • /
    • 2014
  • Purpose: To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods: Tubes containing solutions with different concentrations of $K_2HPO_4$ were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the $K_2HPO_4$ solutions were measured. The relationship between CT number and $K_2HPO_4$ concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results: The relationship between $K_2HPO_4$ concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion: There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

The Effects of Reducing a Dose on the Genital Gland at a CT Scan on the Whole Abdomen According to the Shielding Material (Whole Abdomen CT촬영 시 차폐 재료에 따른 생식선 선량 감쇠 효과)

  • Gang, Eun Bo;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.419-425
    • /
    • 2016
  • The purpose of this study is to produce a shielding material to reduce a dose on the genital gland, one of the superficial organs, at a CT scan on the whole abdomen and hardly affect picture quality and examine its utility. This research made 22 mm silicone and 7.3 mm aluminum having the similar material quality and effect of previous bismuth. By using the non-shield, bismuth, 22 mm silicone, and 7.3 mm aluminum shielding materials, this author conducted a comparative experiment measuring the decay rate of the genital gland's exposure to radiation, change of the CT number and noise in the image, and the CT number, noise, and uniformity in the AAPM phantom. According to the results, exposure to radiation is reduced in bismuth as 29.96%, silicone 22 mm as 13.10%, and 7.3 mm aluminum as 18.27%. In bismuth, however, the image's CT number varies a lot, and uniformity is measured to be inappropriate in the AAPM phantom scan; therefore, it indicates great change in terms of picture quality in superficial organs like the genital gland. Concerning superficial organs like the genital gland, if 22 mm silicone and 7.3 mm aluminum are used as shielding materials, it will be helpful in reducing variation in picture quality and also decreasing radiation exposure to radiation.

Comparison of Thyroid Doses for Shielding Material Changes in Neck Computed Tomography (Neck CT에서 차폐체 재료 변화에 따른 Thyroid 선량 비교 연구)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.