• Title/Summary/Keyword: CT artifact

Search Result 122, Processing Time 0.025 seconds

High-quality Stitching Method of 3D Multiple Dental CT Images (3차원 다중 치과 CT 영상의 고화질 스티칭 기법)

  • Park, Seyoon;Park, Seongjin;Lee, Jeongjin;Shin, Juneseuk;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

Theoretical Investigation of Metal Artifact Reduction Based on Sinogram Normalization in Computed Tomography (컴퓨터 단층영상에서 사이노그램 정규화를 이용한 금속 영상왜곡 저감 방법의 이론적 고찰)

  • Jeon, Hosang;Youn, Hanbean;Nam, Jiho;Kim, Ho Kyung
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.303-314
    • /
    • 2013
  • Image quality of computed tomography (CT) is very vulnerable to metal artifacts. Recently, the thickness and background normalization techniques have been introduced. Since they provide flat sinograms, it is easy to determine metal traces and a simple linear interpolation would be enough to describe the missing data in sinograms. In this study, we have developed a theory describing two normalization methods and compared two methods with respect to various sizes and numbers of metal inserts by using simple numerical simulations. The developed theory showed that the background normalization provide flatter sinograms than the thickness normalization, which was validated with the simulation results. Numerical simulation results with respect to various sizes and numbers of metal inserts showed that the background normalization was better than the thickness normalization for metal artifact corrections. Although the residual artifacts still existed, we have showed that the background normalization without the segmentation procedure was better than the thickness normalization for metal artifact corrections. Since the background normalization without the segmentation procedure is simple and it does not require any users' intervention, it can be readily installed in conventional CT systems.

Evaluation of Image Quality According to Presence or Absence of Upper limbs in Scan Field of View During CT Examinations (Including LUNG MAN) (CT 검사 시 스캔 범위 내 상지 유무에 따른 영상의 질 평가(LUNG MAN 포함))

  • Zhang, Yuying;Zheng, Haoyang;Jung, Kang-gyo;Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • The purpose of this study was to evaluate whether or not there was artifact when the upper limb could not be lifted to the top of the head during multi-detector computed tomography(MDCT) scans of the chest and abdomen. Contrast radiography of the human and chest phantom was performed with 128channal MDCT. Under the same conditions(120 kVp, 110 mAs, standard algorithm)both hands lifted up and put down each time in the human experiment. In the chest phantom experiment, the radiography was carried out when the upper limb phantom was adjusted at a certain distance(0, 3, 7 cm) from the chest phantom. Subsequently, the values of Noise, CT number, SNR, and CNR were measured in the field of concern. The noise value of fat, rib, and muscle increased when the arm was lifted in humans(0.79, 47.8, 27%). Furthermore, when the upper limb was lowered, the noise value of muscle and lung increased in the phantom(31.2, 9.4%). In addition, the noise value of the muscles and lung decreased by 5, 25.12% and 5.6, 15.35% as the upper limb moved about 0,3,7cm away from the chest. When the chest and abdominal radiography were performed, in the case of the presence of other parts outside the inspection area, the probability of artifact was minimal while the distance was more than 3cm away from the upper limb to the chest and abdomen.

Image Registration for High-Quality Vessel Visualization in Angiography (혈관조영영상에서 고화질 혈관가시화를 위한 영상정합)

  • Hong, Helen;Lee, Ho;Shin, Yeong-Gil
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Cone Beam Computed Tomography in Endodontics (근관치료 영역에서 Cone Beam CT의 활용)

  • Jo, Hyoung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.57 no.7
    • /
    • pp.392-402
    • /
    • 2019
  • The most important part of everyday root canal treatment is diagnosis about the morphology of tooth, root and root canal. Usually this procedure is performed by visual examination and radiographic (panoramic/periapical) examination. However, 2-dimentional radiography has several limitations such as imposition of anatomic structures including buccal/lingual root canals and distortion of images. Recently, owing to the increased interest in dental implant and affordable cost of CBCT equipment, CBCT has been introduced widely in local dental clinics. CBCT is characterized by their lower radiation dose and shorter exposure time than conventional CT scan, and ability of 3-dimentional reconstruction of the dento-alveolar structure. Also in endodontic field, the data from CBCT could be very helpful in diagnosing complex root canal anatomy, apical periodontitis, cause of failure and in determining treatment plan. However, there are some limitations such as radiation dose and artifact. Therefore, clinicians should know about indication, advantages and limitations of CBCT, and properly use it for successful root canal treatment to save the natural teeth.

  • PDF

Quantitative and Qualitative Evaluation according to Radiation Dose Conditions when using MAR function in Implant examination from Cone Beam CT (ConeBeam CT로 임플란트 검사 시 MAR 기능 유무와 선량조건에 따른 정량적 및 정성적 평가)

  • Hyun-Jun, Ahn;Sang-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.905-917
    • /
    • 2022
  • This study was conducted to evaluate the use of the MAR function and the image quality of the image when examining with each radiation dose. A simple Periapical phantom was made to set up an implant, and images were obtained and analyzed according to the presence or absence of MAR function for each radiation dose using CBCT equipment. In this study, MEAN, SNR, and CNR values were obtained using the Image J program, and through statistical analysis, images were the most quantitative and suitable values when the Abutment of Implant was 100 kVp and 8 mA, and when the Center of Implant and Apex of Implant were 100 kVp and 9 mA. As a result, it was confirmed that if the radiation dose increased, the Pixel Value, SNR, and CNR values of the image rose up so that the quality of the image improved, and using the MAR function reduced artifacts.

Quantitative Analysis of Factors Affecting Cobalt Alloy Clip Artifacts in Computed Tomography

  • Sim, Sook Young;Choi, Chi Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.400-404
    • /
    • 2014
  • Objective : Clip artifacts limit the visualization of intracranial structures in CT scans from patients after aneurysmal clipping with cobalt alloy clips. This study is to analyze the parameters influencing the degree of clip artifacts. Methods : Postoperative CT scans of 60 patients with straight cobalt alloy-clipped aneurysms were analyzed for the maximal diameter of white artifacts and the angle and number of streak artifacts in axial images, and the maximal diameter of artifacts in three-dimensional (3-D) volume-rendered images. The correlation coefficient (CC) was determined between each clip artifact type and the clip blade length and clip orientation to the CT scan (angle a, lateral clip inclination in axial images; angle b, clip gradient to scan plane in lateral scout images). Results : Angle b correlated negatively with white artifacts (r=-0.589, p<0.001) and positively with the angle (r=0.636, p<0.001) and number (r=0.505, p<0.001) of streak artifacts. Artifacts in 3-D images correlated with clip blade length (r=0.454, p=0.004). Multiple linear regression analysis revealed that angle b was the major parameter influencing white artifacts and the angle and number of streak artifacts in axial images (p<0.001), whereas clip blade length was a major factor in 3-D images (p=0.034). Conclusion : Use of a clip orientation perpendicular to the scan gantry angle decreased the amount of white artifacts and allowed better visualization of the clip site.

A Method for Sinogram Interpolation for Reducing X-ray Dose (CT의 선량 감소를 위한 sinogram 보간 기법)

  • Kim, Jae-Min;Lee, Ki-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.601-609
    • /
    • 2012
  • In this paper, a limited-view CT image reconstruction method was studied to reduce the scan times and the X-ray dose for the patients. To reduce streak artifacts which is caused by insufficient number of views, we introduce a sinogram interpolation method based on image matching. Image matching is achieved using the characteristics of the neighboring views including intensity, gradient and distance between the pixels. Interpolation is performed using the image matching results.. A numerical phantom and Al-acryl phantom were used for evaluating the effectiveness of the proposed interpolation method. The results showed that streak artifacts were reduced in the reconstructed images while the details of the images were preserved. Moreover, maximum 5% improvements in terms of PSNR were observed.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

Usefulness of DFOV Changes in Pediatric PET/CT Image Reconstruction (PET/CT에서 소아환자 영상 재구성 시DFOV 변화의 유용성)

  • Choi, Sung-Wook;Choi, Choon-Ki;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.171-175
    • /
    • 2008
  • Purpose: There have been something difficulties in locating focuses and quantitative analysis in case of pediatric patients because of the relatively small body compared to adults. This author of this study, therefore, evaluated the usefulness of DFOV (Display Field Of View) according to its changes in PET/CT image reconstruction by means of the phantom experiment and pediatric patients examination. Materials & Methods: 0.023 MBq/cc of $^{18}F$-FDG was put into the uniform NU2-94 phantom, and then emission scan was acquired for 10 minutes. For reconstruction, DFOV values were changed to 50, 45, 40, 35, 30, and 25 cm respectively. As for patient images, 20 patients who were diagnosed as the one or suspicion of the children tumor are targeted from Oct 2007 to Jan 2008. For image reconstruction, 50 cm was the basis of DFOV, and the value was adjusted to DFOV 45 cm to 25 cm respectively. In the phantom and the reconstruction image of pediatric patients, the changes in pixel size and $SUV_{max}$ according to DFOV changes were analyzed. Results: As DFOV decreased to 50, 45, 40, 35, 30, and 25 cm by means of the phantom, the pixel size was changed to 3.906, 3.515, 3.125, 2.734, 2.343, and 1.953 mm respectively. Besides, as a result of reconstruction DFOV in images of pediatric patients to 50, to 25 cm, the different values of $SUV_{max}$ are shown as 3.3, 7.3, 12, 14, 18% and 2.6, 4.3, 5.0, 7.0, 10.0% on respectively when 50 cm was the standard. Conclusion: In $SUV_{max}$ using the phantom, as DFOV decreased every 5 cm, the mean value gradually increased. With 50 cm as the standard, the increase rates were 3.7, 6.5, 11.2, 19.5, and 32.1% respectively. As for pediatric patients image too, as DFOV decreased, the rates increased as in the phantom experiment. In image reconstruction, since DFOV decrease regardless of matrix size change reduced the pixel size, the image quality can be improved. This would be more useful than reconstruction and enlarge images of pediatric patients in the same way of examining adults. However, when the value of 35 cm DFOV was applied, this may result in truncated artifact, and thus the application should be properly controlled. Change of DFOV may produce better image for pediatric patients, but changes of SUV values according to DFOV change should be considered in reading.

  • PDF