• Title/Summary/Keyword: CT장치

Search Result 316, Processing Time 0.021 seconds

초음파 영상 진단장치

  • 이민화
    • 전기의세계
    • /
    • v.38 no.8
    • /
    • pp.9-18
    • /
    • 1989
  • 초음파 CT는 시기적으로 가장 빨리 X-ray CT와 함께 연구되어 왔으나 인체내의 투과성, 난반사, 긴파장등에 의해 실용화가 아직은 요원하다. 초음파 CT는 크게 Time of flight (TOF)CT, Attenuation CT, Reflection CT, Diffraction CT등으로 나눌수 있다. 초기에는 TOF CT, Attenuation CT의 연구가 주로 이루어 졌으나 투과의 문제로 인하여 실제로는 유방의 진단에 국한되고 있다. Reflection CT는 초음파의 특성상 실용화가 가장 쉬우나 Transducer 크기등의 문제로 연구가 지연되고 있다. Diffraction CT는 모든 초음파 CT의 특성을 갖고 있으며 현재에 실용화는 요원한 실정이다. KAIST에서는 TOF CT와 Reflection CT의 특징을 결합한 초음파 CT를 연구 발표한 바 있다. 3-D Image은 지금까지의 초음파진단장치에서 표시하는 2-D Image가 갖고 있는 제반의 문제들을 극복하기 위해 현재 KAIST에서 활발히 연구가 진행중에 있다.

  • PDF

Patient Radiation Exposure Dose in Computed Tomography (전산화단층촬영장치에서 환자피폭선량)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • In case of a CT examinations, there is a difference in the distribution of radiation dose from that of general X-ray equipments, and it has been known to cause a great radiation exposure during the examinations. However, owing to its high reliability on the accuracy of a examinations result, its use has increased continuously. In consideration of such a circumstance, the CT equipment, radiation dose during CT examinations, diagnostic reference level, and solutions to reduce radiation dose were mentioned on the basis of previously reported data.

Performance evaluation of computed tomographic equipment in Korea (국내 CT장치의 성능평가에 관한 연구)

  • Yang, Han-Jun;Go, Sin-Gwan;Park, Jun-Cheol
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.83-83
    • /
    • 2002
  • 국내 35개 병원의 44대의 CT장치를 대상으로 CT장치의 성능을 크게 7가지의 항목별로 구분하여 평가한 결과는 다음과 같았다. 물의 평균 CT number는 -18.9HU와 +68.6HU의 범위에 속했으며, 전체 장치의 평균은 $2.4{\pm}13.0\;HU$였다. 물의 평균 CT number의 권장수준을 -6과 +6로 하였을 경우 이에 적합한 장치는 35대(79.5%)였다. Contrast scale은 장치의 종류에 따라 많은 차이를 나타내었으나 평균은 $2.02{\pm}10^{-4}{\sim}1.665{\pm}10^{-5}$이었다. 직선성을 나타내는 상관계수는 0.984에서 0.992의 분포를 나타내었으며 평균은 $0.990{\pm}0.002$였다. 공간분해능은 0.60 m에서 1.25 mm의 분포를 나타내었으며 전체 장치의 65.9%에 해당되는 29대에서 0.75 mm의 공간 해상능을 나타내었다. 대조도 분해능은 3.2 mm(1/8인치)에서 19.1 mm(3/4인치)의 분포를 나타내었으며, 대조도 분해능의 권장수준을 6.4 mm 이하로 하였을 경우 측정 대상장치 44대 중 이에 적합한 장치는 37대(84.1%)였다. 슬라이스 두께의 설정치가 1 mm인 경우 측정치의 평균은 $2.0{\pm}0.6\;mm$이였으며, 설정치가 2 mm와 3 mm인 경우 측정치는 각각 $3.0{\pm}0.7\;mm$$3.5{\pm}0.6\;mm$이였다. 설정치가 5 mm와 7 mm인 경우 측정치는 각각 $5.1{\pm}0.6\;mm$, $7.0{\pm}0.5mm$이였다. 그리고 10 mm의 설정치에서는 $9.8{\pm}0.7\;mm$의 측정치를 나타내었다. 위치잡이용 중심선의 좌우방향의 편차는 -4.7 mm에서 +41.7 mm의 범위였으며, 상하방향의 편차는 -3.7 mm에서 +4.6 mm의 범위였다. 위치잡이용 중심선의 좌우 및 상하방향의 권장수준을 ${\pm}3.0\;mm$${\pm}3.0\;mm$ 이하로 하였을 경우 41대의 측정 대상장치에서 이에 적합한 장치는 33대(80.5 %)였다.

  • PDF

Computed Tomography and Quality Management (컴퓨터단층촬영장치와 품질관리)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • CT(computed tomography, CT) examinations is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. Recently, the number of CT scans is increasing every year due to the high reliability of CT scans. Increasing the number of tests will accelerate the aging of CT devices, which is why the importance of quality management for CT devices is on the rise. Particularly in CT, quality management refers to a behavior of figuring out and correcting all sorts of hindrance factors that can cause all the problems related to the equipment associated with the diminishment of diagnosed area due to the reduction of image quality in clinical imaging in advance and maintaining a consistent level of image quality and obtaining a proper image. Here, these researchers aim to summarize and report the general contents of quality management in CT.

Survey of CT Practice and Collective Effective Dose Estimation (CT검사건수 및 CT검사에 의한 집단 실효선량의 추정)

  • Lee, Man-Koo;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.231-237
    • /
    • 2010
  • Computed tomography (CT) has been established as an important diagnostic tool in clinical medicine and has become a major source of medical exposure. A nationwide survey regarding CT examinations was carried out in 2007. Thanks to the appeasement policy regulating the import of CT scanners, there are 1,825 CT scanners across the country as of the end of March 2010, which means that we have 36.8 CT scanners per one million people. The annual number of examinations was 3.29 million, the number of examinations per 1000 population was 68. The most part of examinations was abdomen and pelvis. and the collective effective dose was in these parts. The effective dose per one population was evaluated as 0.952 mSv.

Derivation of the Effective Energy Calculation Formula of the X-ray Beam Generated by the CT Simulator (CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도)

  • Kim, Jong-Eon;Lee, Sang-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.869-875
    • /
    • 2021
  • The purpose of this study is to derive a formula for calculating the effective energy of an X-ray beam generated by a CT simulator. Under 90, 120, and 140 kVp X-ray beams, the CT number calibration insert part of the AAPM CT performance phantom was scanned 5 times with a CT simulator. The CT numbers of polyethylene, polystyrene, water, nylon, polycarbonate, and acrylic were measured for each CT slice image. The average value of CT number measured under a single tube voltage and the linear attenuation coefficients corresponding to each photon energy calculated from the data of the National Institute of Standards and Technology were linearly fitted. Among the obtained correlation coefficients, the photon energy having the maximum value was determined as the effective energy. In this way, the effective energy of the X-ray beam generated at each tube voltage was determined. By linearly fitting the determined effective energies(y) and tube voltages(x), y=0.33026x+30.80263 as an effective energy calculation formula was induced.

Relationship Between Type of Medical Institutions According to the Equipment List and Inspection Fee Computed Tomography (의료기관 종별에 따른 전산화단층촬영장비 보유현황과 검사료간의 관계)

  • Kim, Min-Cheol;Lim, Cheong-Hwan;Joo, Yeong-Cheol
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • This study demonstrates holding condition of CT by medical institution classification and by season, and examination fee in Korea currently to quantitatively understand frequency of examination region by change of CT equipment, domestic growing trend and change of distribution and using rate. Recent 10 years of CT holding condition by medical institution classification (Tertiary hospital, General hospital, Hospital, Clinic, Dental hospital, Dental clinic, Hospitalized health center) and by year (2003-2012), and CT examination fee of distribution of medical institution by year is surveyed. The holding ratio of Tertiary hospital level and General hospital level is 32.7% in 2003 and 33.0% in 2012. Whereas, Hospital and Clinic level is 74.2% in 2003 and 66.8% in 2012, which takes approximately 70%. Based on data in 2012, it is 82.2% of total examination fee in Tertiary hospital and General hospital, while 17.5% in hospital and clinic. CT holding rate of Hospital level is increasing, while Clinic level is decreasing. Approximately 80% of CT examination fee is claimed by Tertiary hospital and General hospital. Therefore, there is a significant correlation between CT holding condition of medical institution classification and examination fee. Particularly, correlation between CT holding number of Tertiary hospital and examination fee is significant (p<.001). The more CT holding number, the higher the amount claimed examination fee.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Quality Control Using Contrast Scale in Computed Tomography Equipment (전산화단층촬영장치에서 대조도 척도를 이용한 품질관리)

  • Jong-Eon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.6
    • /
    • pp.707-713
    • /
    • 2024
  • In CT equipments, the contrast scale changes as the equipment ages. In order to maintain a constant contrast scale in clinical practice, users must perform periodic quality control. In this study, the contrast scale for each effective photon energy was determined and analyzed based on CT slice images of the CT number calibration block in the AAPM CT performance phantom. CT slice images of the CT number calibration block were obtained with five scans each at 80, 100, 120, and 140 kVp X-ray beams. In the 5 CT slice images obtained for each tube voltage, the average CT number of the averages was calculated from the average CT numbers measured by setting the region of interest to water and 5 pins. For water and 5 pins, a linear regression analysis was performed on the average CT number of the averages calculated for each tube voltage versus the line attenuation coefficient for each photon energy, and the photon energies with the largest correlation coefficients of 58.5, 65, 71, and 77 keV were found to be effective photon energies. decided. The line attenuation coefficient used to determine this effective photon energy was automatically determined as the effective linear attenuation coefficient. For the effective photon energy, a linear equation was obtained by linear regression analysis of the average CT number of the averages in water and the five pins versus the difference in effective linear attenuation coefficient between the five pins and water. The contrast scale was determined by taking the slope of the obtained linear equation as the reciprocal. The determined contrast scale is 0.000198 to 0.000177 cm-1 HU-1 in the effective photon energy range of 58.5 to 77 keV. The contrast scale decreased as the effective photon energy increased.

The Effects of the CT Voltages on the Dose Calculated by a Commercial RTP System (CT 관전압이 상용 전산화치료계획장치의 선량계산에 미치는 영향)

  • 강세권;조병철;박희철;배훈식
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • The relationship between the dose calculated with a radiotherapy treatment planning system (RTPS) and CT number verses the relative electron density curve was investigated for various CT voltages and beam qualifies. We obtained the relationship between the CT numbers and electron densities of the tissue equivalent materials for various CT voltages and beam qualifies. At lower CT voltages, the higher density materials, like cortical bone, showed larger CT numbers and the soft tissues showed no variations. We peformed a phantom study in a RTPS, where a phantom consisted of lung and bone legions in water. We calculated the dose received behind the lung and bone regions for 6 MV photon beams, in which the regions below the lung, water and bone received higher doses in this listed order. The result was the same for 10 MV photon beams. For the clinical application, the doses were calculated for the lung and pelvis. No difference was observed when using different electron density conversion tables with various CT voltages from a same CT. A relative dose difference of 1.5% was obtained when the CT machine for the density conversion table was different from that for the CT image for planning.

  • PDF