DOI QR코드

DOI QR Code

Quality Control Using Contrast Scale in Computed Tomography Equipment

전산화단층촬영장치에서 대조도 척도를 이용한 품질관리

  • Jong-Eon Kim (Department of Radiological Science, Kaya University)
  • 김종언 (가야대학교 방사선학과)
  • Received : 2024.10.10
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

In CT equipments, the contrast scale changes as the equipment ages. In order to maintain a constant contrast scale in clinical practice, users must perform periodic quality control. In this study, the contrast scale for each effective photon energy was determined and analyzed based on CT slice images of the CT number calibration block in the AAPM CT performance phantom. CT slice images of the CT number calibration block were obtained with five scans each at 80, 100, 120, and 140 kVp X-ray beams. In the 5 CT slice images obtained for each tube voltage, the average CT number of the averages was calculated from the average CT numbers measured by setting the region of interest to water and 5 pins. For water and 5 pins, a linear regression analysis was performed on the average CT number of the averages calculated for each tube voltage versus the line attenuation coefficient for each photon energy, and the photon energies with the largest correlation coefficients of 58.5, 65, 71, and 77 keV were found to be effective photon energies. decided. The line attenuation coefficient used to determine this effective photon energy was automatically determined as the effective linear attenuation coefficient. For the effective photon energy, a linear equation was obtained by linear regression analysis of the average CT number of the averages in water and the five pins versus the difference in effective linear attenuation coefficient between the five pins and water. The contrast scale was determined by taking the slope of the obtained linear equation as the reciprocal. The determined contrast scale is 0.000198 to 0.000177 cm-1 HU-1 in the effective photon energy range of 58.5 to 77 keV. The contrast scale decreased as the effective photon energy increased.

CT장치들에서 대조도 척도는 장치의 노후화로 변화된다. 임상에서 일정한 대조도 척도를 유지하기 위하여, 사용자들은 주기적인 품질관리를 하여야 한다. 본 연구에서, 유효광자에너지별 대조도 척도는 AAPM CT 성능 팬텀에서 CT number 교정 블록의 CT 슬라이스 영상들 기반으로 결정과 분석을 하였다. CT number 교정 블록의 CT 슬라이스 영상들은 80, 100, 120, 140 kVp X-선 빔들에서 각각 5번 스캔으로 얻었다. 관전압별 얻어진 5개 CT 슬라이스 영상들에서, 물과 5개 핀에 관심영역을 설정하여 측정된 평균 CT number들로부터 평균들의 평균 CT number는 산출되었다. 물과 5개 핀에 대하여, 관전압별 산출된 평균들의 평균 CT number 대 광자에너지별 선감쇠계수를 선형회귀분석하여 가장 큰 상관계수를 나타낸 광자에너지 58.5, 65, 71, 77 keV는 유효광자에너지로 결정하였다. 이 유효광자에너지를 결정할 때 사용한 선감쇠계수는 자동적으로 유효선감쇠계수로 결정되었다. 유효광자에너지에 대하여, 물과 5개 핀에서 평균들의 평균 CT number 대 5개 핀과 물 사이의 유효선감쇠계수 차이를 선형회귀분석하여 선형방정식은 얻었다. 얻어진 선형방정식의 기울기를 역수로 취하여 대조도 척도는 결정되었다. 결정된 대조도 척도는 유효광자에너지 58.5~77 keV 범위에서 0.000198~0.000177 cm-1 HU-1이다. 대조도 척도는 유효광자에너지가 높을수록 감소하는 양상을 나타내었다.

Keywords

References

  1. P. K. Cho, "Computed Tomography and Quality Management", Journal of the Korean Society of Radiology, Vol. 14, No. 3, pp. 221-233, 2020. https://doi.org/10.7742/jksr.2020.14.3.221 
  2. A. F. Carvalho, A. D. Oliveira, J. G. Alves, J. V. Carreiro, L. C. Jensen, K. A. Jessen, "Quality Control in Computed Tomography Performed in Portugal and Denmark", Radiation Protection Dosimetry, Vol. 57, No. 1-4, pp. 333-337, 1995. https://doi.org/10.1093/rpd/57.1-4.333 
  3. P. Nowik, R. Bujila, G. Poludniowski, A. Fransson, "Quality Control of CT Systems by Automated Monitoring of Key Performance Indicators: a Two-Year Study", Journal of Applied Clinical Medical Physics, Vol. 16, No. 4, pp. 254-265. 2015. https://doi.org/10.1120/jacmp.v16i4.5469 
  4. AAPM report No. 1, "Phantoms for Performance Evaluation and Quality Assurance of CT Scanners", American Association of Physicists in Medicine, pp. 1-23, 1977. https://doi.org/10.37206/1 
  5. The Korean Society of Medical Imaging Technology, Textbook Computed Tomography, Chung-Ku Publishing Co., 541-554, 2014. 
  6. M. R. Millner, W. H. Payne, R. G. Waggener, W. D. McDavid, M. J. Dennis, V. J. Sank, "Determination of Effective Energies in CT Calibration", Medical Physics, Vol. 5, No. 6, pp. 543-545, 1978. http://dx.doi.org/10.1118/1.594488 
  7. J. E. Kim, "Determination of Effective Energy of CT X-ray Beams", Journal of the Korean Society of Radiology, Vol. 13, No. 4, pp. 517-522, 2019. https://doi.org/10.7742/jksr.2019.13.4.517 
  8. J. E. Kim, "Measurement of CT Numbers for Effective Atomic Number And Physical Density of Compound", Journal of the Korean Society of Radiology, Vol. 15, No. 2, pp. 125-130, 2021. https://doi.org/10.7742/jksr.2021.15.2.125 
  9. J. Nosil, K. I. Pearce, R. A. Stein, "Linearity and Contrast Scale Control in Computed Tomography", Medical Physics, Vol. 16. No. 1, pp. 110-113, 1989. https://doi.org/10.1118/1.596396 
  10. AAPM CT Performance Phantom, User Guide, CIRS, From URL; https://www.cirsinc.com/wp-content/uploads/2020/12/610-UG-072220.pdf 
  11. J. K. Kim, "Method of Quality Control Test of CT Number Linearity by Linear Regression Analysis", Kaya University, Master of Ragical Science, 2023. 
  12. S. Kondo, S. Koyama, "Estimation of Effective Energy in Phantom in X-ray CT Using Monte Carlo Simulation", Progress in Nuclear Science and Technology, Vol. 3, pp. 82-85. 2012. http://dx.doi.org/10.15669/pnst.3.82 
  13. E. O. Crawley, W. D. Evans, G. M. Owen, "The Measurement of Effective Energy and Linear Attenuation Coefficient in a X-ray CT Scanner(Abstract)", Physics in Medicine & Biology, Vol. 30, No. 1, pp. 93, 1985. 
  14. A. Ishiguro, K. Sato, M. Taura, H. Hoshi, "Quantitative Evaluation of the Effect of Changes in Effective Energy on tne Image Quality in X-ray Computed Tomography", Physical and Engineering Sciences in Medicine, Vol. 43, No. 2, pp. 567-575, 2020. https://doi.org/10.1007/s13246-020-00857-4 
  15. S. Okayama, T. Soeda, Y. Takami, R. Kawakami, S. Somekawa, S. Uemura, Y. Saito, "The Influence of Effective Energy on Computed Tomography Number Depends on Tissue Characteristics in Monoenergetic Cardiac Imaging", Radiology Research and Practice, Vol. 2012, pp. 1-7, 2012. https://doi.org/10.1155/2012/150980 
  16. P. S. Tofts, "Definitions of Effective Energy in Computed Tomography", Physics in Medicine & Biology, Vol. 26, No. 2, pp. 313-317, 1981. https://doi.org/10.1088/0031-9155/26/2/010 
  17. F. M. Khan, The Physics of Radiation Therapy, 3rd Ed., Lippincott Williams & Wilkins Co., 59-70, 2003.