• Title/Summary/Keyword: CST1

Search Result 400, Processing Time 0.022 seconds

The Effect of Mo Addition on Oxygen Vacancies in the Oxide Scale of Ferritic Stainless Steel for SOFC Interconnects

  • Dae Won Yun;Hi Won Jeong;Seong Moon Seo;Hyung Soo Lee;Young Soo Yoo
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The concentration and diffusion coefficient of oxide ion vacancies in the oxide scale formed on Fe-22Cr-0.5Mn ferritic stainless steel with and without molybdenum (Mo) was measured at 800℃ by the electrochemical polarization method. After pre-oxidation for 100 h in ambient air at 800 ℃, the oxide scale on one side was completely removed with sandpaper. A YSZ plate was placed on the side where the oxide scale remained. Platinum (Pt) meshes were attached on the top of the YSZ plate and the side where the oxide scale was removed. Changes in electrical current were measured after applying an electrical potential through Pt wires welded to the Pt meshes. The results were interpreted by solving the diffusion equation. The diffusion coefficient and concentration of oxide ion vacancy decreased by 30% and 70% in the specimen with Mo, respectively, compared to the specimen without Mo. The oxide ion vacancy concentration of chromia decreased due to the addition of Mo.

Ultrasonic Sludge Disintegration for Improving Anaerobic Digestion and Simulation of ADM1 (혐기성 소화효율 향상을 위한 초음파를 이용한 슬러지 전처리 및 ADM1 모의)

  • Ahn, Jae-Hwan;Kim, Mee-Kyung;Bae, Jae-Ho;Kim, Hee-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.98-105
    • /
    • 2007
  • The objectives of this study were to demonstrate that enhanced anaerobic digestion could be achieved by adopting ultrasonic cavitation pretreatment on the basis of the biogas production and to compare the simulation results of ADM1 (Anaerobic Digestion Model No. 1) with results of the experimentally operated digester the ultrasonic pretreatment of sewage sludge showed the hindered effect on the dewaterbility and the increase of SCOD production. In this study, four sets of lab-scale anaerobic digester were operated with untreated(control), 30 min, 60 min and 90 min ultrasonic pretreated sludge. TCOD removal efficiencies in digesters of control, 30, 60, 90 min sonicated sludge were 31.9%, 37.9, 38.5% and42.2%, and 75 removal were 15.9%, 20.8%, 21.5%, 24.1% respectively. Also more biogas was produced gradually with the increased sludge loading and the pretreatment time. Overall the simulation results had a correspondence tendency with the experimental efficiencies.

LTE / WiMAX Dual Band Antenna Design for Ultra-wideband Communications (초광대역 통신용 LTE/WiMAX 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.441-444
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / WiMAX is designed for UWB communication. The proposed antenna is designed for FR-4 (er = 4.3), 29[mm] x 45[mm], and can be used in the LTE frequency band of 1.82[GHz] and the WiMAX frequency band of 3.5[GHz]. Studio 2014 was used. The simulation results show 1.785[dB] at 1.82[GHz] and 1.720[dB] at 3.5[GHz]. S-parameters were also found to be less than -10dB (WSWR2: 1) in the desired frequency band. In order to achieve broadband, miniaturization, low cost and low loss, Width, length, width of transmission line, etc. were calculated. Therefore, it is considered that the applicable antenna can be applied satisfying the desired condition.

  • PDF

The Corrosion Inhibition Characteristics of Sodium Nitrite Using an On-line Corrosion Rate Measurement System (온라인 부식속도 측정 시스템을 이용한 아질산 나트륨의 금속 부식억제 특성 연구)

  • Park, Mal-Yong;Moon, Jeon-Soo;Kang, Dae-Jin
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • An on-line corrosion rate measurement system was developed using a personal computer, a data acquisition board and program, and a 2-electrode corrosion probe. Reliability of the developed system was confirmed with through comparison test. With this system, the effect of sodium nitrite ($NaNO_2$) as a corrosion inhibitor were studied on iron and aluminum brass that were immersed in sodium chloride (NaCl) solution. Corrosion rate was measured based on the linear polarization resistance method. The corrosion rates of aluminum brass and iron in 1% NaCl solutions were measured to be 0.290 mm per year (mmpy) and 0.2134 mmpy, respectively. With the addition of 200 ppm of $NO{_2}^-$, the corrosion rates decreased to 0.0470 mmpy and 0.0254 mmpy. The addition of $NO{_2}^-$ caused a decrease in corrosion rates of both aluminum brass and iron, yet the $NO{_2}^-$ acted as a more effective corrosion inhibitor for iron. than aluminum brass.

A Cutoff Probe for the Measurement of High Density Plasma

  • Yu, Gwang-Ho;Na, Byeong-Geun;Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.148-148
    • /
    • 2012
  • A cutoff probe is the novel diagnostic method to get the absolute plasma density with simple system and less assumption. However, high density of ion flux from plasma on probe tip can make the error of plasma density measurement because the dielectric material of probe tip can be damaged by ion flux. We proposed a shielded cutoff probe using the ceramic tube for protection from ion flux. The ceramic tube on probe tip can intercept the ion flux from plasma. The transmitted spectrum using the shielded cutoff probe is good agreement with E/M wave simulation result (CST Microwave Studio) and previous circuit simulation of cutoff probe [1]. From the analysis of the measured transmitted spectrum base on the circuit modeling, the parallel resonance frequency is same as the unshielded cutoff probe case. The obtained results of electron density is presented and discussed in wide range of experimental conditions, together with comparison result with previous cutoff method.

  • PDF

Characteristics of Cavitation-Erosion Damage with Amplitude in Seawater of 5052-O Al Alloy for Ship (선박용 5052-O 알루미늄 합금의 해수 내 진폭 변수에 따른 캐비테이션-침식 손상 특성)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.239-249
    • /
    • 2020
  • The characteristics of cavitation-erosion damage with changes in the amplitude of 5052-O aluminum alloy for ships were investigated in a seawater environment. In the cavitation-erosion experiment, the cavitation environment was created using a vibration-generating device with a piezo-electric effect. The amplitudes of 5 ㎛, 10 ㎛, and 30 ㎛ were created by changing the geometric shape of the cavitation horn. The resistance characteristics of cavitation-erosion damage were evaluated by weight loss and pitting area. The damaged surface was analyzed using scanning electron microscopy (SEM) and 3D optical microscopy. As the amplitude increased, the amount of damage and the area of the damaged surface increased, and the damage was concentrated at the center and edge of the specimen. The pit was created after the initial incubation period with increasing experimental time, and then the pits were merged to grow and propagate into craters, and eventually, the surface was detached and damaged. The cavitation-erosion damage after 30 minutes with amplitude of 10 ㎛ and 30 ㎛ was 1.48 and 2.21 times compared to 5 ㎛, respectively.

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives

  • Shin, Yoonji;Cho, Kyehyun
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.243-252
    • /
    • 2019
  • The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.

Effects of Na2S, NaCl, and H2O2 Concentrations on Corrosion of Aluminum (AA1100의 부식에 미치는 Na2S, NaCl, H2O2 농도의 영향)

  • Lee, Ju Hee;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.312-317
    • /
    • 2019
  • The objective of this study was to investigate the corrosion behavior of aluminum (AA1100) in a mixed solution of 0 ~ 0.1 g/L Na2S + 0.3 ~ 3 g/L NaCl + 0 ~ 10 mL/L H2O2. Potentiodynamic polarization tests were performed. Effects of solution compositions on corrosion potential, corrosion rate, and pitting potential of aluminum were statistically analyzed with a regression model. Results suggested that localized corrosion susceptibility of aluminum was increased in the solution with increasing concentration of NaCl because the pitting potential was lowered linearly with increasing NaCl concentration. On the contrary, H2O2 mitigated the galvanic corrosion of aluminum by increasing the corrosion potential. It also mitigated localized corrosion by increasing the pitting potential of aluminum. Na2S did not exert a noticeable effect on the corrosion of aluminum. These effects of different chemical species at various concentrations were independent of each other. Synergy or offset effect was not observed.

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P.;Raulio, M.;Carpen, L.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.221-227
    • /
    • 2019
  • During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

Enhancement of Sewage Sludge Dewaterability by H2O2-Oxidation and Mixing with Paper Sludge (하수슬러지 탈수성 개선을 위한 과산화수소 처리 및 제지슬러지 혼합탈수에 관한 연구)

  • Hwang, Sun-Jin;Eom, Hyoung-Choon;Jang, Hyun-Sup;Jang, Kwang-Un;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.508-514
    • /
    • 2004
  • Industrial and municipal wastewater treatment plants produce large amounts of sludge cakes for final disposal. This problem is an inevitable drawback inherent to the activated sludge process. Both the reduction of the amount of sludge produced and improvement of its dewaterability are presently very important issue also in Korea. So many pre-treatment processes have been developed in order to improve sludge dewatering efficiency. In this study the effects of hydrogen peroxide and paper sludge mixing processes were considered as reasonable alternatives to enhance sludge dewaterability. The CST of sludge was significantly decreased, and dewaterability improved by hydrogen peroxide oxidation treatment. The optimum dosage of hydrogen peroxide was proved to be 10mg/g-TS (when TS of sludge was 2%) with the conditions of pH 4 and only 1~2 minutes of reaction time. The mixing of paper sludge with sewage sludge was turned out to be very effective in reduction of sludge cake; 30% of sludge cake reduction was accomplished. Optimum mixing ratio of paper sludge was about 30%(v/v). This process also could save 25% of polymer to be required. These two alternatives are somewhat realistic, but it was concluded that paper sludge mixing process will be the best choice.