Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.6.243

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives  

Shin, Yoonji (School of Materials Science and Engineering, Yeungnam University)
Cho, Kyehyun (School of Materials Science and Engineering, Yeungnam University)
Publication Information
Corrosion Science and Technology / v.18, no.6, 2019 , pp. 243-252 More about this Journal
Abstract
The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.
Keywords
Magnesium alloy; Corrosion inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 MARS G. Fontana, Corrosion Engineering, pp. 14 - 174, McGraw-Hill, New York (1986).
2 H. Yashiro and K. Tanno, Corros. Sci., 31, 485 (1990).   DOI
3 S. Ningshen, U. K. Mudali, and R. K. Dayal, Br. Corros. J., 36, 36 (2013).   DOI
4 J. Park, S. Matsch, and H. Bohni, J. Electrochem. Soc., 149, B34 (2002).   DOI
5 F. E. T. Heakal, A. M. Fekry, and M. A. E. B. Jibril, Corros. Sci., 53, 1174 (2011).   DOI
6 W. H. Ailor, Handbook on corrosion testing and evaluation, p. 174, John Wiley and Sons, New York (1971).
7 M. C. Zhao, M. Liu, and G. L. Song, Corros. Sci., 50, 3168 (2008).   DOI
8 M. Kaseem, M. P. Kamil, J. H. Kwon, and Y. G. Ko, Surf. Coat. Technol., 283, 268 (2015).   DOI
9 K. S. Choi and S. D. Choi, J. Kor. Inst. Surf. Eng., p. 23944, (2011).
10 E. F. Emley, Principle of Magnesium Technology, pp. 30 - 31, Pergamon Press, London (1966).
11 G. L. Makar and J. Kruger, Int. Mater. Rev., 38, p. 138 (1993).   DOI
12 J. E. Gray and B. Luan, J. Alloys Compd., 336, 88 (2002).   DOI
13 W. S. Loose, Corrosion and Protection of Magnesium, in: L. M. Pidgeon, J. C. Mathes, N. E. Woldmen (eds.), p. 173, ASM Int., Materials Park, OH (1946).
14 O. Lander, J. E. Lein, T. Kr Aune, and K. Nisanciogiu, Corrosion, 45, 741 (1989).   DOI
15 L. Wang, T. Shinohara, and B.-P. Zhang, Zairyo-to-Kankyo, 58, 105 (2009).   DOI
16 D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, J. Magnes. Alloy., 2, 36 (2014).   DOI
17 I. B. Singh, M. Singg, and S. Das, J. Magnes. Alloy., 3, 1 (2015).   DOI
18 L. Gao, C. Zhang, M. Zhang, X. Huang, and N. Sheng, J. Alloys Compd., 468, 285 (2009).   DOI
19 S. Li, A. C. Bacco, N. Birbillis, and H. Cong, Corros. Sci., 112, 596 (2016).   DOI
20 Q. Qu, J. Ma, L. Wang, L. Li, W. Bai, and Z. Ding, Corros. Sci., 53, 1186 (2011).   DOI
21 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., pp. 140 - 143, NACE, Houston (1974).
22 A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci., 50, 823 (2008).   DOI
23 J. Liao, M. Hotta, and N. Yamamot, Corros. Sci., 61, 208 (2012).   DOI
24 A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci., 50, 823 (2008).   DOI
25 F. Cao, G.-L. Song, and A. Atrens, Corros. Sci., 111, 835 (2016).   DOI
26 A. Sadeghi, E. Hasanpur, A. Bahmani, and K. S. Shin, Corros. Sci., 141, 117 (2018).   DOI
27 A. Fattah-alhosseini and M. S. Joni, J. Magnes. Aolly., 2, 75 (2014).
28 L. Li, F. Pan, and J. Lei, Magnesium Alloys - Corrosion and Surface Treatments, p. 344, Intech, China (2011).
29 H. Gao, Q. Li, Y. Dai, F. Luo, and H. X. Zhang, Corros. Sci., 52, 1603 (2010).   DOI
30 Z. Feng, B. Hurley, J. Li, andR. Buchheit, J. Electrochem. Soc., 165, C94 (2018).   DOI
31 S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, T. Nonferr. Mettal. Soc., 24, 1969 (2014).   DOI
32 Yu. I. Kuznetsov, A. M. Semiletov, and A. A. Chirkunov, Int. J. Corros. Scale Inhib., 5, 31 (2016).   DOI
33 F. Zucchi, V. Grassi, and F. Zanotto, Mater. Corros., 60, 199 (2009).   DOI