DOI QR코드

DOI QR Code

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives

  • Shin, Yoonji (School of Materials Science and Engineering, Yeungnam University) ;
  • Cho, Kyehyun (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2019.10.24
  • Accepted : 2019.11.29
  • Published : 2019.12.31

Abstract

The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.

Keywords

References

  1. K. S. Choi and S. D. Choi, J. Kor. Inst. Surf. Eng., p. 23944, (2011).
  2. E. F. Emley, Principle of Magnesium Technology, pp. 30 - 31, Pergamon Press, London (1966).
  3. G. L. Makar and J. Kruger, Int. Mater. Rev., 38, p. 138 (1993). https://doi.org/10.1179/095066093790326320
  4. J. E. Gray and B. Luan, J. Alloys Compd., 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  5. W. S. Loose, Corrosion and Protection of Magnesium, in: L. M. Pidgeon, J. C. Mathes, N. E. Woldmen (eds.), p. 173, ASM Int., Materials Park, OH (1946).
  6. O. Lander, J. E. Lein, T. Kr Aune, and K. Nisanciogiu, Corrosion, 45, 741 (1989). https://doi.org/10.5006/1.3585029
  7. L. Wang, T. Shinohara, and B.-P. Zhang, Zairyo-to-Kankyo, 58, 105 (2009). https://doi.org/10.3323/jcorr.58.105
  8. D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, J. Magnes. Alloy., 2, 36 (2014). https://doi.org/10.1016/j.jma.2014.01.004
  9. I. B. Singh, M. Singg, and S. Das, J. Magnes. Alloy., 3, 1 (2015). https://doi.org/10.1016/j.jma.2014.12.010
  10. L. Gao, C. Zhang, M. Zhang, X. Huang, and N. Sheng, J. Alloys Compd., 468, 285 (2009). https://doi.org/10.1016/j.jallcom.2007.12.080
  11. S. Li, A. C. Bacco, N. Birbillis, and H. Cong, Corros. Sci., 112, 596 (2016). https://doi.org/10.1016/j.corsci.2016.08.022
  12. Q. Qu, J. Ma, L. Wang, L. Li, W. Bai, and Z. Ding, Corros. Sci., 53, 1186 (2011). https://doi.org/10.1016/j.corsci.2010.12.014
  13. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., pp. 140 - 143, NACE, Houston (1974).
  14. A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci., 50, 823 (2008). https://doi.org/10.1016/j.corsci.2007.11.005
  15. J. Liao, M. Hotta, and N. Yamamot, Corros. Sci., 61, 208 (2012). https://doi.org/10.1016/j.corsci.2012.04.039
  16. A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci., 50, 823 (2008). https://doi.org/10.1016/j.corsci.2007.11.005
  17. F. Cao, G.-L. Song, and A. Atrens, Corros. Sci., 111, 835 (2016). https://doi.org/10.1016/j.corsci.2016.05.041
  18. A. Sadeghi, E. Hasanpur, A. Bahmani, and K. S. Shin, Corros. Sci., 141, 117 (2018). https://doi.org/10.1016/j.corsci.2018.06.018
  19. A. Fattah-alhosseini and M. S. Joni, J. Magnes. Aolly., 2, 75 (2014).
  20. L. Li, F. Pan, and J. Lei, Magnesium Alloys - Corrosion and Surface Treatments, p. 344, Intech, China (2011).
  21. H. Gao, Q. Li, Y. Dai, F. Luo, and H. X. Zhang, Corros. Sci., 52, 1603 (2010). https://doi.org/10.1016/j.corsci.2010.01.033
  22. Z. Feng, B. Hurley, J. Li, andR. Buchheit, J. Electrochem. Soc., 165, C94 (2018). https://doi.org/10.1149/2.1171802jes
  23. S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, T. Nonferr. Mettal. Soc., 24, 1969 (2014). https://doi.org/10.1016/S1003-6326(14)63278-7
  24. Yu. I. Kuznetsov, A. M. Semiletov, and A. A. Chirkunov, Int. J. Corros. Scale Inhib., 5, 31 (2016). https://doi.org/10.17675/2305-6894-2016-5-1-3
  25. F. Zucchi, V. Grassi, and F. Zanotto, Mater. Corros., 60, 199 (2009). https://doi.org/10.1002/maco.200805045
  26. MARS G. Fontana, Corrosion Engineering, pp. 14 - 174, McGraw-Hill, New York (1986).
  27. H. Yashiro and K. Tanno, Corros. Sci., 31, 485 (1990). https://doi.org/10.1016/0010-938X(90)90150-4
  28. S. Ningshen, U. K. Mudali, and R. K. Dayal, Br. Corros. J., 36, 36 (2013). https://doi.org/10.1179/000705901101501460
  29. J. Park, S. Matsch, and H. Bohni, J. Electrochem. Soc., 149, B34 (2002). https://doi.org/10.1149/1.1430415
  30. F. E. T. Heakal, A. M. Fekry, and M. A. E. B. Jibril, Corros. Sci., 53, 1174 (2011). https://doi.org/10.1016/j.corsci.2010.11.040
  31. W. H. Ailor, Handbook on corrosion testing and evaluation, p. 174, John Wiley and Sons, New York (1971).
  32. M. C. Zhao, M. Liu, and G. L. Song, Corros. Sci., 50, 3168 (2008). https://doi.org/10.1016/j.corsci.2008.08.023
  33. M. Kaseem, M. P. Kamil, J. H. Kwon, and Y. G. Ko, Surf. Coat. Technol., 283, 268 (2015). https://doi.org/10.1016/j.surfcoat.2015.11.006