CS(Compressed Sensing)는 오늘날 신호 처리 영역에서 많은 주목을 받고 있는 이론 중의 하나이다. 이 CS 분야에서 효과적인 복구 알고리즘을 설계하는 것은 가장 큰 도전적 연구 중의 하나로 인식되고 있다. 이에 따라 다양한 복구 알고리즘이 많은 문헌을 통해서 제안 되었으며 최근에 Maleki와 Donoho에 의해 제안된 AMP(Approximation Message Passing) 알고리즘은 기존에 제시된 알고리즘에 비해 간단한 구조를 가지고 있지만 좋은 성능을 보여줌으로써 상당한 주목을 받고 있다. 기존의 (BP) Belief Propagation 알고리즘은 오직 희소(Sparse) 센싱 행렬에서만 좋은 성능을 보여 준 것에 반해, AMP 알고리즘은 밀집(Dense) 센싱 행렬에 기초를 둔 Belief Propagation 알고리즘임에도 불구하고 이와 비슷한 성능을 보여준다. 본 논문은 다양한 영역에서 AMP 알고리즘이 적용되기 위하여 이에 대한 지침 및 기존의 고전적 Message Passing 알고리즘과의 관계에 대해 분석하였다. 또한 기존의 알고리즘과의 비교 분석을 통해 AMP 알고리즘의 우수성을 제시하였다.
본 논문에서는 1차원 레이더 특성(signature)인 고해상도 거리 측면도(HRRP)와 2차원 레이더 특성인 ISAR 영상을 형성하기 위하여 CS(Compressive Sensing) 기반의 레이더 신호 모델을 적용한 sparse 복원(sparse recovery) 알고리즘을 소개하고자 한다. 만약, 관측된 RCS(Radar Cross Section) 데이터 샘플에서 데이터 손실이 발생할 경우, 기존의 discrete Fourier transform(DFT) 방식으로는 올바른 고해상도의 레이더 특성들을 얻을 수 없다. 하지만, 데이터 손실이 존재하더라도 상기 sparse 복원 알고리즘을 적용하면 고해상도의 레이더 특성을 성공적으로 복원할 수 있고, 원래 광대역의 RCS 데이터를 이용한 레이더 특성과 동등하게 고해상도를 유지할 수 있다. 따라서, 본 논문에서 보여준 결과에서와 같이 원하지 않는 간섭신호나 전파 교란 신호에 의해 데이터 손실이 발생한 RCS 데이터를 수집하더라도, sparse 복원 알고리즘을 이용하면 기존 DFT 방식과 달리 고해상도의 레이더 특성을 성공적으로 복원할 수 있음을 관찰할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.4160-4176
/
2015
Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.
압축센싱은 성긴 (sparse) 신호에 대해 Nyquist rate 미만의 샘플링으로도 신호 획득이 가능하다는 것을 수학적으로 증명한 새로운 개념이다. 그동안 영상분야 압축센싱을 위한 수많은 복원 알고리즘들이 제안되어 왔으나, 낮은 측정률 하에서는 복원 화질 측면에서 아직 개선할 점이 많다. 일례로, 자연 영상의 압축센싱 복원 화질 향상을 위해, 영상과 관련한 사전 정보들로부터 정규화 식을 도출하여 복원에 적용해 볼 수 있을 것이다. 따라서, 본 논문에서는 Dantzig selector 및 평활 필터(가우시안 필터 및 nonlocal 평균 필터)기반의 평활 잔차 오류 정규화 방법을 제안한다. 또한, 복원 영상의 객체 및 배경에서 발생하는 edge 정보를 우수하게 보전하는 것으로 알려진 Total variation 기반 최소화 알고리즘에 적용하여 복원 영상의 화질을 향상시키는 방법을 제안한다. 제안하는 구조는 잔차신호의 평활화를 활용한다는 측면에서 새로운 압축센싱 복원 방식이라고 할 수 있다. 실험 결과, 제안방법은 기존 방법들에 비해 객관적 및 주관적 화질 측면에서 더 높은 성능 향상을 보여주었으며, 특히 기존 Bayesian 압축센싱 복원 방식과 비교 시 최대 9.14 dB 성능이 향상되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권6호
/
pp.2748-2766
/
2016
Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.
Jin-xiu Zhu;Christian Esposito;Ai-min Jiang;Ning Cao;Pankoo Kim
Journal of Internet Technology
/
제21권1호
/
pp.203-219
/
2020
Compressed video sensing (CVS) is one of the 5G application of compressed sensing (CS) to video coding. Block-based residual reconstruction is used in CVS to explore temporal redundancy in videos. However, most current studies on CVS focus on random measurements without quantization, and thus they are not suitable for practical applications. In this study, an efficient ratecontrol scheme combining measurement rate and quantization for residual reconstruction in CVS is proposed. The quantization effects on CS measurements and recovery for video signals are first analyzed. Based on this, a mathematical relationship between quantitative distortion (QD), sampling rate (SR), and the quantization parameter (QP) is derived. Moreover, a novel distortion model that exhibits the relationship between QD, SR, and QP is presented, if statistical independency between the QD and the CS reconstruction distortion is assumed. Then, using this model, a rate-distortion (RD) optimized rate allocation algorithm is proposed, whereby it is possible to derive the values of SR and QP that maximize visual quality according to the available channel bandwidth.
Wang, Meng;Ning, Zhen Hu;Yu, Jing;Xiao, Chuang Bai
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.461-484
/
2021
Compressed sensing in image reconstruction has attracted attention and many studies are proposed. As we know, adding prior knowledge about the distribution of the support on the original signal to CS can improve the quality of reconstruction. However, it is still difficult for a recovery framework adjusts its strategy for exploiting the prior knowledge efficiently according to the current estimated signals in serial iterations. With the theory of information geometry, we propose an adaptive strategy based on the current estimated signal in each iteration of the recovery. We also improve the performance of existing algorithms through the adaptive strategy for exploiting the prior knowledge according to the current estimated signal. Simulations are presented to validate the results. In the end, we also show the application of the model in the image.
본 논문에서는 근단 (Near-End) 잡음 환경에서 ITU-T의 표준 음성부호화기인 G.729A CS-ACELP 기반의 효과적인 음성강화 기법을 제시한다. 일반적으로 다양한 배경 잡음이 존재하는 근단 환경에서 수신하는 원단 화자 음성의 명료도가 매우 감소하므로, 이를 극복하기 위한 원단 화자 음성 강화 기법이 필요하다. 기존의 음성강화 시스템과는 대조적으로, 다양한 배경 잡음이 존재하는 근단 환경에서 음성부호화기에 기반하여, 원단으로부터 수신된 비트스트림 파라미터 중 여기신호(excitation signal)를 강화하는 알고리즘을 제시한다. 구체적으로, 다양한 배경 잡음이 존재하는 근단 환경에서 G.729A CS-ACELP의 부호화기를 통해 배경 잡음의 여기신호를 추정하고, 추정된 배경 잡음의 여기신호를 기반으로 원단 화자로부터 전송된 음성 신호의 여기신호를 강화시키는데, 특별히 G.729A 복호화기내에서 원단의 음성 신호를 직접 강화하는 알고리즘을 제안한다. 제안된 음성 강화 기법의 성능은 다양한 잡음 환경 하에서 ITU-T P.800의 주관적 음질 측정 방법인 CCR (Comparison Category Rating) 테스트에 의해 평가되었으며, 기존의 SNR 복구 기법과 비교해서 우수한 성능을 보여주었다.
Orthogonal matching pursuit (OMP) 알고리듬은 underdetermined 시스템에서 희소 신호를 복구하는 대표적인 greedy 알고리듬으로 많은 관심을 받고 있다. 본 논문에서는 OMP 알고리듬의 반복과정에서 후보 support 집합들을 구성하여 마지막 반복과정에서 최소 잔차를 이용하는 multiple candidate matching pursuit (MuCaMP) 기법을 제안한다. MuCaMP 가 완벽한 신호 복원을 보장하기 위한 restricted isometry property (RIP)를 이용한 충분조건, ${\delta}_{N+K}<\frac{\sqrt{N}}{\sqrt{K}+3\sqrt{N}}$을 제시한다. 실험을 통해 후보 support 집합들의 크기에 따른 성능과 MuCaMP의 복원 성능이 기존의 기법들에 비해 우수함을 확인하였다.
본 논문에서는 불완전한 radar-cross-section(RCS) 데이터로부터 inverse synthetic aperture radar(ISAR) 영상 복원과 동시에 표적의 회전각도를 추정하기 위한 compressive sensing(CS) 기반의 레이더 신호 모델을 적용한 parametric sparse 복원 알고리즘을 제안하고자 한다. Sparse 복원 알고리즘으로는 iteratively-reweighted-least-square(IRLS) 기법을 이용하여 각도 방향(cross-range)에서 모르는 처프 비율(chirp rate)의 처프 성분을 포함하는 레이더 신호 모델과 결합한다. 그리고, particle swarm optimization(PSO) 최적화 알고리즘을 이용하여 표적의 회전각도와 연관된 파라미터들을 추출한다. 따라서, RCS 데이터 샘플에 데이터 손실이 발생하더라도 본 논문의 IRLS 기반 parametric sparse 복원 알고리즘에 따라 효율적으로 ISAR 영상을 복원할 수 있고, 동시에 표적의 회전각도를 추정할 수 있다. 또한, 불완전한 RCS 데이터 샘플에 대하여 영상의 엔트로피 관점에서 본 논문에서 제안한 방법의 성능과 전통적인 보간법의 성능을 서로 비교 관찰한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.