• 제목/요약/키워드: CS recovery algorithm

검색결과 14건 처리시간 0.023초

압축 센싱 신호 복구를 위한 AMP(Approximate Message Passing) 알고리즘 소개 및 성능 분석 (Introduction and Performance Analysis of Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery)

  • 백형호;강재욱;김기선;이흥노
    • 한국통신학회논문지
    • /
    • 제38C권11호
    • /
    • pp.1029-1043
    • /
    • 2013
  • CS(Compressed Sensing)는 오늘날 신호 처리 영역에서 많은 주목을 받고 있는 이론 중의 하나이다. 이 CS 분야에서 효과적인 복구 알고리즘을 설계하는 것은 가장 큰 도전적 연구 중의 하나로 인식되고 있다. 이에 따라 다양한 복구 알고리즘이 많은 문헌을 통해서 제안 되었으며 최근에 Maleki와 Donoho에 의해 제안된 AMP(Approximation Message Passing) 알고리즘은 기존에 제시된 알고리즘에 비해 간단한 구조를 가지고 있지만 좋은 성능을 보여줌으로써 상당한 주목을 받고 있다. 기존의 (BP) Belief Propagation 알고리즘은 오직 희소(Sparse) 센싱 행렬에서만 좋은 성능을 보여 준 것에 반해, AMP 알고리즘은 밀집(Dense) 센싱 행렬에 기초를 둔 Belief Propagation 알고리즘임에도 불구하고 이와 비슷한 성능을 보여준다. 본 논문은 다양한 영역에서 AMP 알고리즘이 적용되기 위하여 이에 대한 지침 및 기존의 고전적 Message Passing 알고리즘과의 관계에 대해 분석하였다. 또한 기존의 알고리즘과의 비교 분석을 통해 AMP 알고리즘의 우수성을 제시하였다.

Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구 (A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm)

  • 배지훈;김경태;양은정
    • 한국전자파학회논문지
    • /
    • 제25권4호
    • /
    • pp.467-475
    • /
    • 2014
  • 본 논문에서는 1차원 레이더 특성(signature)인 고해상도 거리 측면도(HRRP)와 2차원 레이더 특성인 ISAR 영상을 형성하기 위하여 CS(Compressive Sensing) 기반의 레이더 신호 모델을 적용한 sparse 복원(sparse recovery) 알고리즘을 소개하고자 한다. 만약, 관측된 RCS(Radar Cross Section) 데이터 샘플에서 데이터 손실이 발생할 경우, 기존의 discrete Fourier transform(DFT) 방식으로는 올바른 고해상도의 레이더 특성들을 얻을 수 없다. 하지만, 데이터 손실이 존재하더라도 상기 sparse 복원 알고리즘을 적용하면 고해상도의 레이더 특성을 성공적으로 복원할 수 있고, 원래 광대역의 RCS 데이터를 이용한 레이더 특성과 동등하게 고해상도를 유지할 수 있다. 따라서, 본 논문에서 보여준 결과에서와 같이 원하지 않는 간섭신호나 전파 교란 신호에 의해 데이터 손실이 발생한 RCS 데이터를 수집하더라도, sparse 복원 알고리즘을 이용하면 기존 DFT 방식과 달리 고해상도의 레이더 특성을 성공적으로 복원할 수 있음을 관찰할 수 있었다.

Non-Iterative Threshold based Recovery Algorithm (NITRA) for Compressively Sensed Images and Videos

  • Poovathy, J. Florence Gnana;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4160-4176
    • /
    • 2015
  • Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.

평활 잔차 오류 정규화를 통한 자연 영상의 압축센싱 복원 (Compressive Sensing Recovery of Natural Images Using Smooth Residual Error Regularization)

  • ;;;박영현;전병우
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.209-220
    • /
    • 2014
  • 압축센싱은 성긴 (sparse) 신호에 대해 Nyquist rate 미만의 샘플링으로도 신호 획득이 가능하다는 것을 수학적으로 증명한 새로운 개념이다. 그동안 영상분야 압축센싱을 위한 수많은 복원 알고리즘들이 제안되어 왔으나, 낮은 측정률 하에서는 복원 화질 측면에서 아직 개선할 점이 많다. 일례로, 자연 영상의 압축센싱 복원 화질 향상을 위해, 영상과 관련한 사전 정보들로부터 정규화 식을 도출하여 복원에 적용해 볼 수 있을 것이다. 따라서, 본 논문에서는 Dantzig selector 및 평활 필터(가우시안 필터 및 nonlocal 평균 필터)기반의 평활 잔차 오류 정규화 방법을 제안한다. 또한, 복원 영상의 객체 및 배경에서 발생하는 edge 정보를 우수하게 보전하는 것으로 알려진 Total variation 기반 최소화 알고리즘에 적용하여 복원 영상의 화질을 향상시키는 방법을 제안한다. 제안하는 구조는 잔차신호의 평활화를 활용한다는 측면에서 새로운 압축센싱 복원 방식이라고 할 수 있다. 실험 결과, 제안방법은 기존 방법들에 비해 객관적 및 주관적 화질 측면에서 더 높은 성능 향상을 보여주었으며, 특히 기존 Bayesian 압축센싱 복원 방식과 비교 시 최대 9.14 dB 성능이 향상되었다.

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.

Joint Sampling Rate and Quantization Rate-Distortion Analysis in 5G Compressive Video Sensing

  • Jin-xiu Zhu;Christian Esposito;Ai-min Jiang;Ning Cao;Pankoo Kim
    • Journal of Internet Technology
    • /
    • 제21권1호
    • /
    • pp.203-219
    • /
    • 2020
  • Compressed video sensing (CVS) is one of the 5G application of compressed sensing (CS) to video coding. Block-based residual reconstruction is used in CVS to explore temporal redundancy in videos. However, most current studies on CVS focus on random measurements without quantization, and thus they are not suitable for practical applications. In this study, an efficient ratecontrol scheme combining measurement rate and quantization for residual reconstruction in CVS is proposed. The quantization effects on CS measurements and recovery for video signals are first analyzed. Based on this, a mathematical relationship between quantitative distortion (QD), sampling rate (SR), and the quantization parameter (QP) is derived. Moreover, a novel distortion model that exhibits the relationship between QD, SR, and QP is presented, if statistical independency between the QD and the CS reconstruction distortion is assumed. Then, using this model, a rate-distortion (RD) optimized rate allocation algorithm is proposed, whereby it is possible to derive the values of SR and QP that maximize visual quality according to the available channel bandwidth.

Adaptive Algorithm in Image Reconstruction Based on Information Geometry

  • Wang, Meng;Ning, Zhen Hu;Yu, Jing;Xiao, Chuang Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.461-484
    • /
    • 2021
  • Compressed sensing in image reconstruction has attracted attention and many studies are proposed. As we know, adding prior knowledge about the distribution of the support on the original signal to CS can improve the quality of reconstruction. However, it is still difficult for a recovery framework adjusts its strategy for exploiting the prior knowledge efficiently according to the current estimated signals in serial iterations. With the theory of information geometry, we propose an adaptive strategy based on the current estimated signal in each iteration of the recovery. We also improve the performance of existing algorithms through the adaptive strategy for exploiting the prior knowledge according to the current estimated signal. Simulations are presented to validate the results. In the end, we also show the application of the model in the image.

근단 배경 잡음 환경에서 G.729A 음성부호화기 파라미터에 기반한 새로운 음성 강화 기법 (Speech Reinforcement Based on G.729A Speech Codec Parameter Under Near-End Background Noise Environments)

  • 최재훈;장준혁
    • 한국음향학회지
    • /
    • 제28권4호
    • /
    • pp.392-400
    • /
    • 2009
  • 본 논문에서는 근단 (Near-End) 잡음 환경에서 ITU-T의 표준 음성부호화기인 G.729A CS-ACELP 기반의 효과적인 음성강화 기법을 제시한다. 일반적으로 다양한 배경 잡음이 존재하는 근단 환경에서 수신하는 원단 화자 음성의 명료도가 매우 감소하므로, 이를 극복하기 위한 원단 화자 음성 강화 기법이 필요하다. 기존의 음성강화 시스템과는 대조적으로, 다양한 배경 잡음이 존재하는 근단 환경에서 음성부호화기에 기반하여, 원단으로부터 수신된 비트스트림 파라미터 중 여기신호(excitation signal)를 강화하는 알고리즘을 제시한다. 구체적으로, 다양한 배경 잡음이 존재하는 근단 환경에서 G.729A CS-ACELP의 부호화기를 통해 배경 잡음의 여기신호를 추정하고, 추정된 배경 잡음의 여기신호를 기반으로 원단 화자로부터 전송된 음성 신호의 여기신호를 강화시키는데, 특별히 G.729A 복호화기내에서 원단의 음성 신호를 직접 강화하는 알고리즘을 제안한다. 제안된 음성 강화 기법의 성능은 다양한 잡음 환경 하에서 ITU-T P.800의 주관적 음질 측정 방법인 CCR (Comparison Category Rating) 테스트에 의해 평가되었으며, 기존의 SNR 복구 기법과 비교해서 우수한 성능을 보여주었다.

다중 후보 매칭 퍼슛 (Multiple Candidate Matching Pursuit)

  • 권석법;심병효
    • 방송공학회논문지
    • /
    • 제17권6호
    • /
    • pp.954-963
    • /
    • 2012
  • Orthogonal matching pursuit (OMP) 알고리듬은 underdetermined 시스템에서 희소 신호를 복구하는 대표적인 greedy 알고리듬으로 많은 관심을 받고 있다. 본 논문에서는 OMP 알고리듬의 반복과정에서 후보 support 집합들을 구성하여 마지막 반복과정에서 최소 잔차를 이용하는 multiple candidate matching pursuit (MuCaMP) 기법을 제안한다. MuCaMP 가 완벽한 신호 복원을 보장하기 위한 restricted isometry property (RIP)를 이용한 충분조건, ${\delta}_{N+K}<\frac{\sqrt{N}}{\sqrt{K}+3\sqrt{N}}$을 제시한다. 실험을 통해 후보 support 집합들의 크기에 따른 성능과 MuCaMP의 복원 성능이 기존의 기법들에 비해 우수함을 확인하였다.

데이터 손실이 있는 RCS 데이터에서 압축 센싱 이론을 적용한 ISAR 영상 복원 알고리즘 연구 (A Study on the ISAR Image Reconstruction Algorithm Using Compressive Sensing Theory under Incomplete RCS Data)

  • 배지훈;강병수;김경태;양은정
    • 한국전자파학회논문지
    • /
    • 제25권9호
    • /
    • pp.952-958
    • /
    • 2014
  • 본 논문에서는 불완전한 radar-cross-section(RCS) 데이터로부터 inverse synthetic aperture radar(ISAR) 영상 복원과 동시에 표적의 회전각도를 추정하기 위한 compressive sensing(CS) 기반의 레이더 신호 모델을 적용한 parametric sparse 복원 알고리즘을 제안하고자 한다. Sparse 복원 알고리즘으로는 iteratively-reweighted-least-square(IRLS) 기법을 이용하여 각도 방향(cross-range)에서 모르는 처프 비율(chirp rate)의 처프 성분을 포함하는 레이더 신호 모델과 결합한다. 그리고, particle swarm optimization(PSO) 최적화 알고리즘을 이용하여 표적의 회전각도와 연관된 파라미터들을 추출한다. 따라서, RCS 데이터 샘플에 데이터 손실이 발생하더라도 본 논문의 IRLS 기반 parametric sparse 복원 알고리즘에 따라 효율적으로 ISAR 영상을 복원할 수 있고, 동시에 표적의 회전각도를 추정할 수 있다. 또한, 불완전한 RCS 데이터 샘플에 대하여 영상의 엔트로피 관점에서 본 논문에서 제안한 방법의 성능과 전통적인 보간법의 성능을 서로 비교 관찰한다.