Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
BMB Reports
/
v.56
no.2
/
pp.102-107
/
2023
Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.
Since its first demonstration as a practical genome editing tool in the early 2010s, the use of clustered regularly interspaced short palindromic repeat (CRISPR) along with the endonuclease Cas9 (CRISPR/Cas9) has become an essential choice for generating targeted mutations. Due to its relative simplicity and cost-effectiveness compared to other molecular scissors, i.e., zinc finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN), the CRISPR/Cas9 system has been shown to have a massive influence on genetic studies regardless of the biological kingdom. Although the system is in the process of being established, numerous protocols have already been released for the system and there have been various topics of CRISPR related papers published each year in ever-increasing manner. Here, we will briefly introduce CRISPR/Cas9 system and discuss the variants of the CRISPR system. Also, their applications to crop improvement will be dealt with mainly ornamental crops among horticultural crops other than Arabidopsis as a model plant. Finally, some issues on the barriers restraining the use of CRISPR system on floricultural crops, the prospect of CRISPR system as a DNA-free genome editing tool with efficient facilitators and finally, the future perspectives on the CRISPR system will be described.
Seok, Heeyoung;Deng, Rui;Cowan, Douglas B.;Wang, Da-Zhi
Clinical and Experimental Pediatrics
/
v.64
no.6
/
pp.269-279
/
2021
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.
The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.
CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.
An, So Young;Kim, Eun-Hee;Bae, Euiyoung;Suh, Jeong-Yong
Journal of the Korean Magnetic Resonance Society
/
v.24
no.3
/
pp.70-76
/
2020
The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.
The CRISPR-Cas system is the adaptive immune system in bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, an endonuclease Cas9 cleaves DNA targets of phages as directed by guide RNA comprising crRNA and tracrRNA. To avoid targeting and destruction by Cas9, phages employ anti-CRISPR (Acr) proteins that act against host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of AcrIIA4 that inhibits endonuclease activity of type II-A Listeria monocytogenes Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The secondary structures of AcrIIA4 predicted by the backbone chemical shifts show an ${\alpha}{\beta}{\beta}{\beta}{\alpha}{\alpha}$ fold, which is used to determine the solution structure.
Song, Jae-Young;Nino, Marjohn;Nogoy, Franz Marielle;Jung, Yu-Jin;Kang, Kwon-Kyoo;Cho, Yong-Gu
Journal of Plant Biotechnology
/
v.44
no.2
/
pp.107-114
/
2017
Implementation of crop improvement programs relies on genetic diversity. To overcome the limited occurrence of natural mutations, researchers and breeders applied diverse methods, ranging from conventional crossing to classical bio-technologies. Earlier generations of knockout and gain-of-function technologies often result in incomplete gene disruption or random insertions of transgenes into plant genomes. The newly developed editing tool, CRISPR/Cas9 system, not only provides a powerful platform to efficiently modify target traits, but also broadens the scope and prospects of genome editing. Customized Cas9/guide RNA (gRNA) systems suitable for efficient genomic modification of mammalian cells or plants have been reported. Following successful demonstration of this technology in mammalian cells, CRISPR/Cas9 was successfully adapted in plants, and accumulating evidence of its feasibility has been reported in model plants and major crops. Recently, a modified version of CRISPR/Cas9 with added novel functions has been developed that enables programmable direct irreversible conversion of a target DNA base. In this review, we summarized the milestone applications of CRISPR/Cas9 in plants with a focus on major crops. We also present the implications of an improved version of this technology in the current plant breeding programs.
CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.
Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
Journal of Microbiology and Biotechnology
/
v.26
no.2
/
pp.394-401
/
2016
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.