• Title/Summary/Keyword: CR-dimension

Search Result 54, Processing Time 0.019 seconds

CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS OF A SASAKIAN SPACE FORM

  • Kim, Hyang Sook;Choi, Don Kwon;Pak, Jin Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.131-140
    • /
    • 2014
  • In this paper we investigate (n+1)($n{\geq}3$)-dimensional contact CR-submanifolds M of (n-1) contact CR-dimension in a complete simply connected Sasakian space form of constant ${\phi}$-holomorphic sectional curvature $c{\neq}-3$ which satisfy the condition h(FX, Y)+h(X, FY) = 0 for any vector fields X, Y tangent to M, where h and F denote the second fundamental form and a skew-symmetric endomorphism (defined by (2.3)) acting on tangent space of M, respectively.

Asymmetric Cosmic Ray Modulation of Forbush Decreases Associated with the Propagation Direction of Interplanetary Coronal Mass Ejection

  • Jongil Jung;Suyeon Oh;Yu Yi;Jongdae Sohn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.117-124
    • /
    • 2023
  • A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.

A Study on Fracture Surface of Aged Turbine by Fractal Dimension

  • Kim, Amkee;Nahm, Seung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1417-1422
    • /
    • 2001
  • Since fracture surface presents clear evidence to describe the circumstances of material failure event, analysis of fracture surface should provide plenty of useful information for failure prevention. Thus if we extract proper information from the fracture surface, the safety evaluation, for plant component could be more accurate. In general, the chaotic morphology of fracture surface is determined by the degree of material degradation as well as by other factors such as type of load, geometry of specimen, notch condition, microstructure of material and environment. In this research, we developed a fractal analysis technology for the fracture surface of aged turbine rotor steel based on the slit-island technique using an image analyzer. Moreover the correlation between the fractal dimension and the aging time was studied.

  • PDF

Full mouth rehabilitation with vertical dimension increase in patient with excessive worn dentition due to parafunctional mandibular movements: a case report (비기능 하악 운동으로 과도하게 마모된 치아를 가진 환자에서 수직 고경 증가를 동반한 전악 수복 증례보고)

  • JiHoon Park;Seong-A Kim;SunYoung Yim;JooHyuk Bang;HeeWon Jang;YongSang Lee;KeunWoo Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • The gradual teeth wear with age is a natural phenomenon, but excessive wear beyond physiological levels can lead to vertical dimension loss, occlusal imbalance, temporomandibular joint disorders, and periodontal disease. In such cases, prosthodontic restoration becomes necessary emphasizing the importance of appropriate vertical dimension increase and stable occlusion in central relation (CR). In this case, a 74-year-old patient with clenching and grinding habit had severe teeth wear and after assessing interocclusal distance, wear degree, pronunciation, and facial profile, it was decided to perform full-mouth fixed prosthesis restoration with a 4 mm vertical dimension increase. And the significantly displaced Maximum Intercuspal Position (MICP) caused by parafunctional movements was re-established as a stable mutually protective occlusal relationship at centric relation and after a successful 4 months adaptation to provisional restorations, the final prosthesis was fabricated. During 4months of observation periods, stable occlusion in central relation and mutual protection occlusal relationships were maintained and the patient was satisfied with function and aesthetics, leading to this report.

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

  • Gaussier, Herve;Merker, Joel
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.517-561
    • /
    • 2003
  • We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in $\mathbb{C}$. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

Torsional effects in symmetrical steel buckling restrained braced frames: evaluation of seismic design provisions

  • Roy, Jonathan;Tremblay, Robert;Leger, Pierre
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.423-442
    • /
    • 2015
  • The effects of accidental eccentricity on the seismic response of four-storey steel buildings laterally stabilized by buckling restrained braced frames are studied. The structures have a square, symmetrical footprint, without inherent eccentricity between the center of lateral resistance (CR) and the center of mass (CM). The position of the bracing bents in the buildings was varied to obtain three different levels of torsional sensitivity: low, intermediate and high. The structures were designed in accordance with the seismic design provisions of the 2010 National Building Code of Canada (NBCC). Three different analysis methods were used to account for accidental eccentricity in design: (1) Equivalent Static Procedure with static in-plane torsional moments assuming a mass eccentricity of 10% of the building dimension (ESP); (2) Response Spectrum Analysis with static torsional moments based on 10% of the building dimension (RSA-10); and (3) Response Spectrum Analysis with the CM being displaced by 5% of the building dimension (RSA-5). Time history analyses were performed under a set of eleven two-component historical records. The analyses showed that the ESP and RSA-10 methods can give appropriate results for all three levels of torsional sensitivity. When using the RSA-5 method, adequate performance was also achieved for the low and intermediate torsional sensitivity cases, but the method led to excessive displacements (5-10% storey drifts), near collapse state, for the highly torsionally sensitive structures. These results support the current provisions of NBCC 2010.

The prosthetic approach and principle for an collapsed VDO : A clinical case of Class II div.2 patient (저위교합환자의 보철적 접근법과 이론 : Class II div.2 교합환자 증례)

  • Kwon, Kung-Rock
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.95-107
    • /
    • 2004
  • The prosthodontic treatment of Class II division 2 malocclusions is challenging. Ideally, these malocclusions should be identified at an early age and corrected with orthodontic treatment; otherwise, the individual develops a habitual position characterized by deep overbite and significant retruded position of mandibular condyle at the TMjoint fossa. This article describes a clinical protocol for the occlusal rehabilitation of patients with Class II div.2 malocclusions. Within this protocol, an occlusal splint was used to locate the most suitable maxillary-mandibular relationship for function and range of motion. The splint increased the vertical dimension and reduced pain on TMjoints. After transfer this relationship to an articulator for fabrication of provisional restorations, the CR position and centric prematurity contact between maxilla and mandible was used to determine the tentative vertical dimension of occlusion(VDO). The amount of elevation of VDO was decided on the articulated model. The provisional restorations were accurately transfered to a patient's mouth in clinical procedures using tattoo points. The final restoration was delivered after some trial periods with provisional restorations. The theory behind this protocol and its associated clinical procedures is presented along with a discussion.

Gothic arch tracing to record centric relation for dentures (Gothic arch tracing을 이용한 의치의 중심위 기록)

  • Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.238-245
    • /
    • 2014
  • In order to create denture occlusion that is functional, comfortable and balanced, it is necessary to both determine a vertical dimension of occlusion that is in harmony with the patient's musculature and to record a relatively repeatable jaw relation position. This require clinical skill to establish an accurate, verifiable and reproducible vertical dimension of occlusion (VDO) and centric relation (CR). Correct vertical relation depends upon a consideration of several factors, including muscle tone, inter-dental arch space and parallelism of the ridges. Centric relation is considered to be a repeatable position from which all opening and lateral mandibular movements begin and recording this position is a critical step in the fabrication of dentures. Any errors made while taking maxillo-mandibular jaw relation records will result in denture that are uncomfortable. The purpose of this paper is to review a very simple and efficient technique for accomplishing these two important steps in denture fabrication.