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CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS OF A
SASAKIAN SPACE FORM

Hyana Sook KiMm, DoN KwoN CHOI, AND JIN SUK PAK

ABSTRACT. In this paper we investigate (n + 1)(n > 3)-dimensional con-
tact C' R-submanifolds M of (n — 1) contact C'R-dimension in a complete
simply connected Sasakian space form of constant ¢-holomorphic sec-
tional curvature ¢ # —3 which satisfy the condition h(FX,Y)+h(X, FY)
= 0 for any vector fields X,Y tangent to M, where h and F' denote the
second fundamental form and a skew-symmetric endomorphism (defined
by (2.3)) acting on tangent space of M, respectively.

1. Introduction

Let S?™*! be a (2m + 1)-unit sphere in the complex (m + 1)-space C™*1,
ie.,

m+1
S = {(21,. ., Zmg1) €CT DY g2 =1}
j=1

For any point z € S2™+1 we put ¢ = Jz, where J denotes the complex structure
of C™*+1. Denoting by 7 the orthogonal projection : T,C™+! — T,82™+1 and
putting ¢ = woJ, we can see that the set (¢, &, 1, g) defines a Sasakian structure
on $?m+1 where g is the standard metric on S?™*! induced from that of C™*+!
and 7 is a 1-form dual to &. Hence S?™*! can be considered as a Sasakian
manifold of constant curvature 1 (cf. [2, 4, 5, 6, 7, 8, 9]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field ¢ of S?™*! and denote by D, the ¢-invariant subspace T, M N ¢TI, M of
the tangent space T, M of M at x € M. Then £ cannot be contained in D, at
any point x € M (cf. [7]). Thus the assumption dimD; being constant and
equal to 2 at each point x € M yields that M can be dealt with a contact
C R-submanifold in the sense of Yano-Kon (cf. [4, 7, 8, 9]), where Dy denotes
the complementary orthogonal subspace to D, in T, M. In fact, if there exists a
non-zero vector U which is orthogonal to ¢ and contained in D, then N := ¢U
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must be normal to M. In particular we can easily see that real hypersurfaces
tangent to & of S2™*! are typical examples of such submanifolds.

In this point of view, the present authors investigated (n 4 1)-dimensional
contact C'R-submanifolds of (n — 1) contact C' R-dimension in S?™*! namely,
those with dimD, = n — 1 at each point « in M (cf. [4, 5, 8]) and proved the
following (cf. [4]).

Theorem K-P ([4]). Let M be an (n+1)-dimensional contact C R-submanifold
of (n — 1) contact CR-dimension in a (2m + 1)-unit sphere S*™*L. If for any
vector fields X, Y tangent to M, the equality given in (3.1) holds on M, then
M is locally isometric to

SinJrl(rl) X 52"2+1(T2) (T% + 7’% =1)
for some integers ny, ny with ny +ng = (n—1)/2.

In this paper we study (n+1)-dimensional contact C R-submanifold of (n—1)
contact C'R-dimension in a Sasakian space form and determine such submani-
folds in a complete simply connected Sasakian space form (cf. [9, Theorem 5.5,
p. 282]) of constant ¢-holomorphic sectional curvature ¢ # —3 under assump-
tion that the equality given in (3.1) holds on M, which gives an improvement
of the above Theorem K-P.

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C'°°, and all maps also be of class C'*° if
not stated otherwise.

2. Fundamental properties of contact C R-submanifolds

Let M be a (2m+1)-dimensional almost contact metric manifold with struc-
ture (¢,&,1,9). Then, by definition, it follows that

P°X =-X+n(X)§ ¢£=0, n(¢X)=0, n&) =1,
9(¢X,9Y) = g(X,Y) = n(X)n(Y), n(X)=g(X,§)

for any vector fields X, Y tangent to M (cf. [1, 9]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field &€ of M. If the ¢-invariant subspace D, has constant dimension for any
x € M, then M is called a contact C'R-submanifold and the constant is called
contact C R-dimension of M (cf. [4, 7, 8]).

From now on we assume that M is a contact C'R-submanifold of (n — 1)
contact C'R-dimension in M, where n — 1 must be even. Then, as was already
mentioned in S?7*! the structure vector ¢ is always contained in D} and
#D+ C T, M+ at any point z € M. Further, by definition dimD;}- = 2 at any
point € M, and so there exists a unit vector field U contained in D+ which
is orthogonal to £. Since ¢D+ € TM™, ¢U is a unit normal vector field to M,
which will be denoted by N, that is,

(2.2) N = ¢U.

(2.1)
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Moreover, it is clear that ¢TM C TM @ Span{N}. Hence we have, for any
tangent vector field X and for a local orthonormal basis {Ng}ta=1,...p (N1 :=

N, p := 2m — n) of normal vectors to M, the following decomposition in
tangential and normal components:

(2.3) pX = FX 4+ u(X)N,

(2.4) ¢N, = PN,, a=2,...,p.

It is easily shown that F'is a skew-symmetric linear endomorphism acting on
T, M. Since the structure vector field ¢ is tangent to M, (2.1), (2.2) and (2.3)
imply

(25)  FE=0, FU =0, g(U,X) = w(X), u(§) = g(U,§) =0, u(U) = 1.

)
Next, applying ¢ to (2.3) and using (2.1), (2.2), (2.3) and (2.5), we also have
)

(2.6) F?X = - X +n(X)é+u(X)U, u(FX)=0.
On the other hand, it is clear from (2.1) and (2.5) that
(2.7) ¢N = —U,

which combined with (2.4) yields the existence of a local orthonormal basis
{N, Ny, Ny~ }a=1,...,¢ of normal vectors to M such that

(2.8) Ng«:=¢N,, a=1,...,q:=p/2.

We denote by V and V the Levi-Civita connection on M and M, respectively,
and by V+ the normal connection induced from V in the normal bundle 7'M+
of M. Then Gauss and Weingarten formulae are given by

(2.9) VxY =VxY +h(X,Y),

q
(210);  VxN=—AX +VEN = —AX + > {54(X)No + 54+ (X)No- },

a=1

q
(210);  VxNa=—AaX = 5a(X)N + Y {8at(X)Np + sap+ (X) Ny },
b=1

q
(2.10)3  VxNge = —Ag-X — 54-(X)N + Z{sa*b(X)Nb + Sarpe (X)Np=}
b=1

for any vector fields X, Y tangent to M, where s’s are coefficients of the normal
connection V. Here and in the sequel h denotes the second fundamental form
and A, A,, A,~ the shape operators corresponding to the normals N, Ny, N+,
respectively. They are related by

(2.11)  h(X,Y)=g(AX,Y)N + zq:{g(AaX, YN, + g(Ag-X,Y)N,- .

a=1
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From now on we specialize to the case of an ambient Sasakian manifold M,
that is,
(2.12) Vxé = ¢X,
(2.13) (Vx¢)Y = —g(X,Y)E +n(Y)X.

Since the structure vector £ is tangent to M, we can easily verify from (2.1),
(2.3), (2.7), (2.8), (2.10)2—(2.10)3 and (2.13) that

(2.14) AgX = —FAg X + 50 (X)U, Ag-X = FAX — 52(X)U,
(2.15) $a(X) = —u(Ag=X), So+(X) =u(4,X).

Since F is skew-symmetric, (2.14) implies

(2.16)1 J(FAL+ AF)X,Y) = 5,(X)u(Y) — s,(Y)u(X),
(2.16) J(FAuy + A F)X,Y) = 50+ (X)u(Y) — 8o+ (Y)u(X).

Differentiating (2.3) and (2.7) covariantly along M and comparing the tan-
gential with normal parts, we have

(2.17) (VyF) = —g(Y, X)§ + n(X)Y — g(AY, X)U + u(X)AY,
(2.18) (Vyu)X = g(FAY, X),
(2.19) VxU = FAX,

where we have used (2.3), (2.7), (2.8), (2.9), (2.11) and (2.13). On the other
hand, since the structure vector ¢ is tangent to M, we get

¢X =Vx& = Vx&+h(X,¢),
which together with (2.3), (2.9), (2.11) and (2.12) gives

(2.20) Vx€=FX,
(2.21) g(AE, X) =u(X), ie, AE=T,
(2.22) Al =0, Ap£=0, a=2,...,q

If the ambient manifold M is a Sasakian space form M(c), i.e., a Sasakian
manifold of constant ¢-holomorphic sectional curvature ¢, then its curvature
tensor R satisfies

- c+3

(223 RXCY)Z= gV, 2)X — g(X, 2V} + S (n(Xm(2)Y

—n(Y)n(Z2)X +g(X, Z)n(Y)§ - g(Y, Z)n(X)§

+9(0Y, Z2)0X — g(¢X, Z)oY —29(¢X,Y)pZ}
for any vector fields X,Y, Z tangent to M. In this case taking account of (2.3)
and (2.4) we obtain that the equation of Codazzi implies

(224); (VxA)Y — (VyA)X
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c —

. LX) FY — w(Y)FX — 29(FX,Y)U}

q
+) {8a(X)AsY = 5a(Y)AuX + 0= (X)AgeY = 50+ (V) Ag- X},
a=1

(224),  (VxAL)Y — (VyAd)X
= 3,(Y)AX — 5,(X)AY

q
+ Z{Sab(X>AbY — 8ap(Y)ApX + sap (X)Ap-Y — sap- (V) Ap= X },
b—1

(2.24)3  (VxAa:)Y — (VyAg)X
= Sg* (Y)AX — Sqg* (X)AY

q
) {8an(X)AY = 50-6(Y) ApX + sqep- (X) Aps Y
b=1

— Sa*b* (Y)Ab* X}
for any vector fields X, Y tangent to M(cf. [1, 2, 9]).

3. Main results

In this section we let M be an (n + 1)-dimensional contact C' R-submanifold
of (n — 1) contact C'R-dimension immersed in a Sasakian manifold M and let
us use the same notation as stated in the previous section.

We assume that the equality

(3.1) hFX,Y)+h(X,FY)=0

holds on M for any vector fields X,Y tangent to M. Then by means of (2.11)
the condition (3.1) is equivalent to

(3.2), FA= AF,

(3.2)s FA, = AyF, FAg = ApF

for all @ = 1,...,q. Moreover, the last two equations combined with (2.16);
and (2.16)2 yield

(3:3)1 29((FA.)X,Y) = sa(X)u(Y) = sa(Y)u(X),

(3.3)2 29((FAa»)X,Y) = 50+ (X)u(Y) — sa= (YV)u(X),

from which, putting Y = X into (3.3) and (3.4), respectively, and using (2.5),
we obtain

(3.4) $a(X) = sa(U)u(X),  80+(X) = s+ (D)u(X), a=1,...,q.
Hence, it is clear from (3.2)2 and (3.3);1_2 that
(3.5) FA, = AF =0, FAy = Ag-F =0.
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As a direct consequence of (3.2); and (3.5), it follows from (2.5), (2.6), (2.15),
(2.21) and (2.22) that

(3.6) AU = U + €, A= u(AU),
(3.7) AaX = 50-(X)U,  Age X = —s84(X)U.
Substituting (3.4) and (3.7) into (2.24),, we have

c—1

(3.8) (VxA)Y — (VyA)X = {uW(X)FY —u(Y)FX — 2g(FX,Y)U}.

Now we prepare some lemmas for later use.

Lemma 3.1. Let M be an (n+1)(n > 3)-dimensional contact C R-submanifold
of (n — 1) contact CR-dimension immersed in a Sasakian space form M c)
(¢ # =3). If for any vector fields X,Y tangent to M, the equality (3.1) holds
on M, then

Sa =0, S¢+=0, a=1,...q,

namely, the distinguished normal vector field N is parallel with respect to the
normal connection. Moreover,

Ay =0, Ag-=0, a=1,...q.

Proof. Since the ambient manifold is a Sasakian space form, applying F' to the
both sides of (2.24)2 and using (3.4)—(3.5), we have

(3.9)  F((VxAa)Y — (VyAd)X) = sa(U)u(Y)FAX — so(U)u(X)FAY.

On the other hand, differentiating F'A, = 0 covariantly along M and making
use of (2.17), (2.22), (3.4)1 and (3.9), we can easily obtain

F(VxA,)Y = so (U)u(X)u(Y)E + so- (U)u(AX)u(Y)U — s+ (U)u(Y)AX,
from which together with (3.6), we get
F((VxAa)Y = (Vy 4q)X)
= Sa= (U{n(X)u(Y) = n(Y)u(X)}U = sa- (U){u(Y)AX — u(X)AY'}.
Comparing (3.10) with (3.9), it is clear that
Sa(U{u(Y)FAX —u(X)FAY}
= sa (U){n(X)u(Y) = u(X)n(Y)}U = sa- (U){u(Y)AX — u(X)AY},

(3.10)

from which, putting Y = U into the last equation and taking account of (2.5)
and (3.6), it follows that

5olU)9(FAX,Y) = s (U){n(X)u(Y) + (¥ )u(X) + Xu(X)u(Y) — g(AX, )}
and consequently

(3.11) sa(N{g(FAX,Y) — g(FAY, X)} = 25,(U)g(FAX,Y) = 0

with the aid of the fact that F' is skew-symmetric and (3.2).
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Now we assume that s,(U) # 0. Then it follows from (2.18), (2.19) and
(3.11) that
(3.12) FAX =0, VxU=0, Vxu=0.
Furthermore, it follows from (2.6), (2.21), (3.6) that the first equation of (3.12)
implies
(3.13) AX = {Qu(X) +n(X)}U +u(X)E.
Differentiating (3.13) covariantly along M and using (2.20) and (3.12), we have

(VyA)X ={(YNu(X) 4+ g(X,FY)}U + u(X)FY
and consequently
(VxA)Y — (VyA)X = {(XNu(Y) — Y Nu(X) 4+ 29(FX,Y)}U
+u(Y)FX — u(X)FY.

Comparing the last equation with (3.8), we obtain

c+3
4

{w(X)FY — u(Y)FX — 29(FX,Y)U} = {(X )u(Y) — (Y \u(X)}U,

from which, taking inner product with U and using (2.5), it is clear that
c+3

(3.14) g(FX,Y) = (XNu(Y) — (Y )u(X).

Putting Y = U into (3.14) and taking account of (2.5), we can see that X\ =
(UMu(X), which combined with (3.14) reduces to
(c+3)g(FX,Y) = 0.

Since ¢ # —3, we have FX = 0, which is a contradiction because of n > 3.
Hence s,(U) = 0, which combined with (3.4) yields

(3.15) $5.(X)=0, a=1,...,q

everywhere on M.
Next, the second equation of (3.7) combined with (3.15) turns out to be

A+ =0, a=1,...,q,
from which, making use of (2.24)5 and (3.5), it follows that
S (U {u(Y)FAX — u(X)FAYY} = 0.

Putting Y = U into the last equation and using (2.5), we have s,+(U)FAX =0
and hence, by the same method as in the case of (3.15), we get

(3.16) $ex(X) =0, a=1,...,q
everywhere on M. Hence it is clear from (3.7) and (3.16) that

Ay =0, a=1,...,q. 0
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For the submanifold M given in Lemma 3.1, we can easily see that its first
normal space is contained in Span{/N} which is invariant under parallel trans-
lation with respect to the normal connection V+ because of Lemma 3.1. Thus
we may apply Erbacher’s reduction theorem ([3, p. 339]) for the submanifold
M in a unit sphere $?™*! and thus we have:

Lemma 3.2 ([4]). Let M be an (n + 1)(n > 3)-dimensional contact CR-
submanifold of (n—1) contact C R-dimension immersed in a unit sphere S +1,
If for any vector fields X,Y tangent to M, the equality (3.1) holds on M, then
there exists an (n + 2)-dimensional totally geodesic unit sphere S"2 such that
M c Sz,

Differentiating (3.6) covariantly along M and using (2.19) and (2.20), we

have
(VxA)U + AFAX = (X\)U + M\FAX + FX,
from which together with (3.2);, we obtain
g(VxA)Y — (Vy A)X,U) + 29(FAX, AY)
= (XM)u(Y) — Y Nu(X) + 2 g(FAX,Y) + 2¢9(FX,Y).

Substituting (3.8) into the last equation and taking account of (2.5) and (3.2),
we can easily verify that
c+3

2

g(FX,Y) +2g9(FX, A?Y)
= (XNu(Y) — (Y Nu(X) + 2)\g(FX, AY).

Therefore by means of (3.17), we can prove:

(3.17)

Lemma 3.3. Let M be as in Lemma 3.1. If for any vector fields X,Y tangent
to M, the equality (3.1) holds on M, then the function X = u(AU) is locally
constant.

Proof. Putting X = U into (3.17) and taking account of (2.5), we can obtain
(3.18) XA =pu(X), p:=UM,

from which, differentiating covariantly along M and using (2.18) and (3.2)4,
we get

(3.19) (Y Bu(X) - (XB)u(Y) - 289(FAX,Y) = 0.

Putting X = U into (3,19) and taking account of (2.5), we can see that Y5 =
(UB)u(Y), which combined with (3.18) gives BFAX = 0. Hence, by the quite

same method as in the proof of (3.15), we can easily verify 5 = 0, which
together with (3.18) yields our assertion. ([

Lemma 3.4. Let M be as in Lemma 3.1. If for any vector fields X,Y tangent
to M, the equality (3.1) holds on M, then

A+ VT4 A—V2ZT14

p1 5 p2 = 5
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are non-zero constant eigenvalues of the shape operator A.

Proof. Let p; and p, be distinct solutions of the quadratic equation p?—Ap—1 =
0. Then (3.6) implies

AlprU + &) = pi(p1U + ), A(p2U + &) = pa(p2U +€)

since Ap; + 1= p2, i=1,2. O

On the other hand, owing to Lemma 3.3 it follows from (3.17) that

7c+3

(3.20) g(FX,Y) + g(FX,A%Y) = \g(FX, AY).

Inserting F'X into (3.20) instead of X and using (2.6) and (3.6), we can easily
obtain

c+3Xic—

(3.21) A%X = NAX + 1 n 1{u(X)U +n(X)E}.

If there exists an eigenvector X € Span{U, £}* corresponding to the eigenvalue
pi in Lemma 3.4, then we have from (3.21)

c+3
=

which combined with the fact that p? — Ap; = 1 yields ¢ = 1.

Thus we have the main result.

Theorem. Let M be as in Lemma 3.1. If for any vector fields X, Y tangent to
M, the equality (3.1) holds on M and if multiplicity of one of the eigenvalues p;
and pa appeared in Lemma 3.4 is not less than 2, then M is an (n+1)(n > 3)-
dimensional unit sphere.

When ¢ = 1, (3.21) reduces to A2X = MAX + X and consequently A
has exactly two eigenvalues p; and po. If n > 3, multiplicity of one of the
eigenvalues p; and ps is not less than 2.

Combining Theorem K-P stated in Section 1 with Lemma 3.2 and the above
main Theorem, we have

Corollary ([4]). Let M be an (n + 1)(n > 3)-dimensional contact CR-sub-
manifold of (n —1) contact C R-dimension immersed in a (2m+ 1)-unit sphere
S2mFL - [f for any vector fields X,Y tangent to M, the equality (3.1) holds on
M, then M is locally isometric to

SQ"1+1(T1) X S2n2+1(7"2) (T% +7’g =1)

for some integers ni,ny with nqy +ng = (n —1)/2.
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