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CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS OF A

SASAKIAN SPACE FORM

Hyang Sook Kim, Don Kwon Choi, and Jin Suk Pak

Abstract. In this paper we investigate (n+1)(n ≥ 3)-dimensional con-
tact CR-submanifolds M of (n− 1) contact CR-dimension in a complete
simply connected Sasakian space form of constant φ-holomorphic sec-
tional curvature c 6= −3 which satisfy the condition h(FX,Y )+h(X, FY )
= 0 for any vector fields X, Y tangent to M , where h and F denote the
second fundamental form and a skew-symmetric endomorphism (defined
by (2.3)) acting on tangent space of M , respectively.

1. Introduction

Let S2m+1 be a (2m + 1)-unit sphere in the complex (m + 1)-space Cm+1,
i.e.,

S2m+1 := {(z1, . . . , zm+1) ∈ C
m+1 |

m+1∑

j=1

|zj |2 = 1}.

For any point z ∈ S2m+1 we put ξ = Jz, where J denotes the complex structure
of Cm+1. Denoting by π the orthogonal projection : TzC

m+1 → TzS
2m+1 and

putting φ = π◦J , we can see that the set (φ, ξ, η, g) defines a Sasakian structure
on S2m+1, where g is the standard metric on S2m+1 induced from that of Cm+1

and η is a 1-form dual to ξ. Hence S2m+1 can be considered as a Sasakian
manifold of constant curvature 1 (cf. [2, 4, 5, 6, 7, 8, 9]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field ξ of S2m+1 and denote by Dx the φ-invariant subspace TxM ∩ φTxM of
the tangent space TxM of M at x ∈ M . Then ξ cannot be contained in Dx at
any point x ∈ M (cf. [7]). Thus the assumption dimD⊥

x being constant and
equal to 2 at each point x ∈ M yields that M can be dealt with a contact
CR-submanifold in the sense of Yano-Kon (cf. [4, 7, 8, 9]), where D⊥

x denotes
the complementary orthogonal subspace to Dx in TxM . In fact, if there exists a
non-zero vector U which is orthogonal to ξ and contained in D⊥

x , then N := φU
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must be normal to M . In particular we can easily see that real hypersurfaces
tangent to ξ of S2m+1 are typical examples of such submanifolds.

In this point of view, the present authors investigated (n + 1)-dimensional
contact CR-submanifolds of (n− 1) contact CR-dimension in S2m+1, namely,
those with dimDx = n− 1 at each point x in M (cf. [4, 5, 8]) and proved the
following (cf. [4]).

Theorem K-P ([4]). Let M be an (n+1)-dimensional contact CR-submanifold

of (n− 1) contact CR-dimension in a (2m+ 1)-unit sphere S2m+1. If for any

vector fields X,Y tangent to M , the equality given in (3.1) holds on M , then

M is locally isometric to

S2n1+1(r1)× S2n2+1(r2) (r21 + r22 = 1)

for some integers n1, n2 with n1 + n2 = (n− 1)/2.

In this paper we study (n+1)-dimensional contact CR-submanifold of (n−1)
contact CR-dimension in a Sasakian space form and determine such submani-
folds in a complete simply connected Sasakian space form (cf. [9, Theorem 5.5,
p. 282]) of constant φ-holomorphic sectional curvature c 6= −3 under assump-
tion that the equality given in (3.1) holds on M , which gives an improvement
of the above Theorem K-P.

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C∞, and all maps also be of class C∞ if
not stated otherwise.

2. Fundamental properties of contact CR-submanifolds

Let M be a (2m+1)-dimensional almost contact metric manifold with struc-
ture (φ, ξ, η, g). Then, by definition, it follows that

(2.1)
φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X , Y tangent to M (cf. [1, 9]).
Let M be an (n+1)-dimensional submanifold tangent to the structure vector

field ξ of M . If the φ-invariant subspace Dx has constant dimension for any
x ∈ M , then M is called a contact CR-submanifold and the constant is called
contact CR-dimension of M (cf. [4, 7, 8]).

From now on we assume that M is a contact CR-submanifold of (n − 1)
contact CR-dimension in M , where n− 1 must be even. Then, as was already
mentioned in S2m+1, the structure vector ξ is always contained in D⊥

x and
φD⊥

x ⊂ TxM
⊥ at any point x ∈ M . Further, by definition dimD⊥

x = 2 at any
point x ∈ M , and so there exists a unit vector field U contained in D⊥ which
is orthogonal to ξ. Since φD⊥ ⊂ TM⊥, φU is a unit normal vector field to M ,
which will be denoted by N , that is,

(2.2) N := φU.
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Moreover, it is clear that φTM ⊂ TM ⊕ Span{N}. Hence we have, for any
tangent vector field X and for a local orthonormal basis {Nα}α=1,...,p (N1 :=
N, p := 2m − n) of normal vectors to M , the following decomposition in
tangential and normal components:

(2.3) φX = FX + u(X)N,

(2.4) φNα = PNα, α = 2, . . . , p.

It is easily shown that F is a skew-symmetric linear endomorphism acting on
TxM . Since the structure vector field ξ is tangent to M , (2.1), (2.2) and (2.3)
imply

(2.5) Fξ = 0, FU = 0, g(U,X) = u(X), u(ξ) = g(U, ξ) = 0, u(U) = 1.

Next, applying φ to (2.3) and using (2.1), (2.2), (2.3) and (2.5), we also have

(2.6) F 2X = −X + η(X)ξ + u(X)U, u(FX) = 0.

On the other hand, it is clear from (2.1) and (2.5) that

(2.7) φN = −U,

which combined with (2.4) yields the existence of a local orthonormal basis
{N,Na, Na∗}a=1,...,q of normal vectors to M such that

(2.8) Na∗ := φNa, a = 1, . . . , q := p/2.

We denote by∇ and∇ the Levi-Civita connection onM andM , respectively,
and by ∇⊥ the normal connection induced from ∇ in the normal bundle TM⊥

of M . Then Gauss and Weingarten formulae are given by

(2.9) ∇XY = ∇XY + h(X,Y ),

(2.10)1 ∇XN = −AX +∇⊥

XN = −AX +

q∑

a=1

{sa(X)Na + sa∗(X)Na∗},

(2.10)2 ∇XNa = −AaX − sa(X)N +

q∑

b=1

{sab(X)Nb + sab∗(X)Nb∗},

(2.10)3 ∇XNa∗ = −Aa∗X − sa∗(X)N +

q∑

b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗}

for any vector fields X,Y tangent to M , where s’s are coefficients of the normal
connection ∇⊥. Here and in the sequel h denotes the second fundamental form
and A,Aa, Aa∗ the shape operators corresponding to the normals N,Na, Na∗ ,
respectively. They are related by

(2.11) h(X,Y ) = g(AX, Y )N +

q∑

a=1

{g(AaX,Y )Na + g(Aa∗X,Y )Na∗}.
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From now on we specialize to the case of an ambient Sasakian manifold M ,
that is,

(2.12) ∇Xξ = φX,

(2.13) (∇Xφ)Y = −g(X,Y )ξ + η(Y )X.

Since the structure vector ξ is tangent to M , we can easily verify from (2.1),
(2.3), (2.7), (2.8), (2.10)2–(2.10)3 and (2.13) that

(2.14) AaX = −FAa∗X + sa∗(X)U, Aa∗X = FAaX − sa(X)U,

(2.15) sa(X) = −u(Aa∗X), sa∗(X) = u(AaX).

Since F is skew-symmetric, (2.14) implies

(2.16)1 g((FAa +AaF )X,Y ) = sa(X)u(Y )− sa(Y )u(X),

(2.16)2 g((FAa∗ +Aa∗F )X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X).

Differentiating (2.3) and (2.7) covariantly along M and comparing the tan-
gential with normal parts, we have

(2.17) (∇Y F ) = −g(Y,X)ξ + η(X)Y − g(AY,X)U + u(X)AY,

(2.18) (∇Y u)X = g(FAY,X),

(2.19) ∇XU = FAX,

where we have used (2.3), (2.7), (2.8), (2.9), (2.11) and (2.13). On the other
hand, since the structure vector ξ is tangent to M , we get

φX = ∇Xξ = ∇Xξ + h(X, ξ),

which together with (2.3), (2.9), (2.11) and (2.12) gives

∇Xξ = FX,(2.20)

g(Aξ,X) = u(X), i.e., Aξ = U,(2.21)

Aaξ = 0, Aa∗ξ = 0, a = 2, . . . , q.(2.22)

If the ambient manifold M is a Sasakian space form M(c), i.e., a Sasakian
manifold of constant φ-holomorphic sectional curvature c, then its curvature
tensor R satisfies

R(X,Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }+ c− 1

4
{η(X)η(Z)Y(2.23)

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}

for any vector fields X,Y, Z tangent to M . In this case taking account of (2.3)
and (2.4) we obtain that the equation of Codazzi implies

(2.24)1 (∇XA)Y − (∇Y A)X
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=
c− 1

4
{u(X)FY − u(Y )FX − 2g(FX, Y )U}

+

q∑

a=1

{sa(X)AaY − sa(Y )AaX + sa∗(X)Aa∗Y − sa∗(Y )Aa∗X},

(2.24)2 (∇XAa)Y − (∇Y Aa)X

= sa(Y )AX − sa(X)AY

+

q∑

b=1

{sab(X)AbY − sab(Y )AbX + sab∗(X)Ab∗Y − sab∗(Y )Ab∗X},

(2.24)3 (∇XAa∗)Y − (∇Y Aa∗)X

= sa∗(Y )AX − sa∗(X)AY

+

q∑

b=1

{sa∗b(X)AbY − sa∗b(Y )AbX + sa∗b∗(X)Ab∗Y

− sa∗b∗(Y )Ab∗X}
for any vector fields X,Y tangent to M(cf. [1, 2, 9]).

3. Main results

In this section we let M be an (n+1)-dimensional contact CR-submanifold
of (n− 1) contact CR-dimension immersed in a Sasakian manifold M and let
us use the same notation as stated in the previous section.

We assume that the equality

(3.1) h(FX, Y ) + h(X,FY ) = 0

holds on M for any vector fields X,Y tangent to M . Then by means of (2.11)
the condition (3.1) is equivalent to

(3.2)1 FA = AF,

(3.2)2 FAa = AaF, FAa∗ = Aa∗F

for all a = 1, . . . , q. Moreover, the last two equations combined with (2.16)1
and (2.16)2 yield

(3.3)1 2g((FAa)X,Y ) = sa(X)u(Y )− sa(Y )u(X),

(3.3)2 2g((FAa∗)X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),

from which, putting Y = X into (3.3) and (3.4), respectively, and using (2.5),
we obtain

(3.4) sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X), a = 1, . . . , q.

Hence, it is clear from (3.2)2 and (3.3)1−2 that

(3.5) FAa = AaF = 0, FAa∗ = Aa∗F = 0.
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As a direct consequence of (3.2)1 and (3.5), it follows from (2.5), (2.6), (2.15),
(2.21) and (2.22) that

(3.6) AU = λU + ξ, λ := u(AU),

(3.7) AaX = sa∗(X)U, Aa∗X = −sa(X)U.

Substituting (3.4) and (3.7) into (2.24)1, we have

(3.8) (∇XA)Y − (∇Y A)X =
c− 1

4
{u(X)FY − u(Y )FX − 2g(FX, Y )U}.

Now we prepare some lemmas for later use.

Lemma 3.1. Let M be an (n+1)(n ≥ 3)-dimensional contact CR-submanifold

of (n − 1) contact CR-dimension immersed in a Sasakian space form M(c)
(c 6= −3). If for any vector fields X,Y tangent to M , the equality (3.1) holds

on M , then

sa = 0, sa∗ = 0, a = 1, . . . q,

namely, the distinguished normal vector field N is parallel with respect to the

normal connection. Moreover,

Aa = 0, Aa∗ = 0, a = 1, . . . q.

Proof. Since the ambient manifold is a Sasakian space form, applying F to the
both sides of (2.24)2 and using (3.4)–(3.5), we have

(3.9) F ((∇XAa)Y − (∇Y Aa)X) = sa(U)u(Y )FAX − sa(U)u(X)FAY.

On the other hand, differentiating FAa = 0 covariantly alongM and making
use of (2.17), (2.22), (3.4)1 and (3.9), we can easily obtain

F (∇XAa)Y = sa∗(U)u(X)u(Y )ξ + sa∗(U)u(AX)u(Y )U − sa∗(U)u(Y )AX,

from which together with (3.6), we get

(3.10)
F ((∇XAa)Y − (∇Y Aa)X)

= sa∗(U){η(X)u(Y )− η(Y )u(X)}U − sa∗(U){u(Y )AX − u(X)AY }.
Comparing (3.10) with (3.9), it is clear that

sa(U){u(Y )FAX − u(X)FAY }
= sa∗(U){η(X)u(Y )− u(X)η(Y )}U − sa∗(U){u(Y )AX − u(X)AY },

from which, putting Y = U into the last equation and taking account of (2.5)
and (3.6), it follows that

sa(U)g(FAX, Y ) = sa∗(U){η(X)u(Y ) + η(Y )u(X) + λu(X)u(Y )− g(AX, Y )}
and consequently

(3.11) sa(U){g(FAX, Y )− g(FAY,X)} = 2sa(U)g(FAX, Y ) = 0

with the aid of the fact that F is skew-symmetric and (3.2)1.
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Now we assume that sa(U) 6= 0. Then it follows from (2.18), (2.19) and
(3.11) that

(3.12) FAX = 0, ∇XU = 0, ∇Xu = 0.

Furthermore, it follows from (2.6), (2.21), (3.6) that the first equation of (3.12)
implies

(3.13) AX = {λu(X) + η(X)}U + u(X)ξ.

Differentiating (3.13) covariantly along M and using (2.20) and (3.12), we have

(∇Y A)X = {(Y λ)u(X) + g(X,FY )}U + u(X)FY

and consequently

(∇XA)Y − (∇Y A)X = {(Xλ)u(Y )− (Y λ)u(X) + 2g(FX, Y )}U
+ u(Y )FX − u(X)FY.

Comparing the last equation with (3.8), we obtain

c+ 3

4
{u(X)FY − u(Y )FX − 2g(FX, Y )U} = {(Xλ)u(Y )− (Y λ)u(X)}U,

from which, taking inner product with U and using (2.5), it is clear that

(3.14) −c+ 3

2
g(FX, Y ) = (Xλ)u(Y )− (Y λ)u(X).

Putting Y = U into (3.14) and taking account of (2.5), we can see that Xλ =
(Uλ)u(X), which combined with (3.14) reduces to

(c+ 3)g(FX, Y ) = 0.

Since c 6= −3, we have FX = 0, which is a contradiction because of n ≥ 3.
Hence sa(U) = 0, which combined with (3.4) yields

(3.15) sa(X) = 0, a = 1, . . . , q

everywhere on M .
Next, the second equation of (3.7) combined with (3.15) turns out to be

Aa∗ = 0, a = 1, . . . , q,

from which, making use of (2.24)3 and (3.5), it follows that

sa∗(U){u(Y )FAX − u(X)FAY } = 0.

Putting Y = U into the last equation and using (2.5), we have sa∗(U)FAX = 0
and hence, by the same method as in the case of (3.15), we get

(3.16) sa∗(X) = 0, a = 1, . . . , q

everywhere on M . Hence it is clear from (3.7) and (3.16) that

Aa = 0, a = 1, . . . , q. �
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For the submanifold M given in Lemma 3.1, we can easily see that its first
normal space is contained in Span{N} which is invariant under parallel trans-
lation with respect to the normal connection ∇⊥ because of Lemma 3.1. Thus
we may apply Erbacher’s reduction theorem ([3, p. 339]) for the submanifold
M in a unit sphere S2m+1 and thus we have:

Lemma 3.2 ([4]). Let M be an (n + 1)(n ≥ 3)-dimensional contact CR-

submanifold of (n−1) contact CR-dimension immersed in a unit sphere S2m+1.

If for any vector fields X,Y tangent to M , the equality (3.1) holds on M , then

there exists an (n+2)-dimensional totally geodesic unit sphere Sn+2 such that

M ⊂ Sn+2.

Differentiating (3.6) covariantly along M and using (2.19) and (2.20), we
have

(∇XA)U +AFAX = (Xλ)U + λFAX + FX,

from which together with (3.2)1, we obtain

g((∇XA)Y − (∇Y A)X,U) + 2g(FAX,AY )

= (Xλ)u(Y )− (Y λ)u(X) + 2λg(FAX, Y ) + 2g(FX, Y ).

Substituting (3.8) into the last equation and taking account of (2.5) and (3.2)1,
we can easily verify that

(3.17)
− c+ 3

2
g(FX, Y ) + 2g(FX,A2Y )

= (Xλ)u(Y )− (Y λ)u(X) + 2λg(FX,AY ).

Therefore by means of (3.17), we can prove:

Lemma 3.3. Let M be as in Lemma 3.1. If for any vector fields X,Y tangent

to M , the equality (3.1) holds on M , then the function λ = u(AU) is locally

constant.

Proof. Putting X = U into (3.17) and taking account of (2.5), we can obtain

(3.18) Xλ = βu(X), β := Uλ,

from which, differentiating covariantly along M and using (2.18) and (3.2)1,
we get

(3.19) (Y β)u(X)− (Xβ)u(Y )− 2βg(FAX, Y ) = 0.

Putting X = U into (3,19) and taking account of (2.5), we can see that Y β =
(Uβ)u(Y ), which combined with (3.18) gives βFAX = 0. Hence, by the quite
same method as in the proof of (3.15), we can easily verify β = 0, which
together with (3.18) yields our assertion. �

Lemma 3.4. Let M be as in Lemma 3.1. If for any vector fields X,Y tangent

to M , the equality (3.1) holds on M , then

ρ1 :=
λ+

√
λ2 + 4

2
, ρ2 :=

λ−
√
λ2 + 4

2
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are non-zero constant eigenvalues of the shape operator A.

Proof. Let ρ1 and ρ2 be distinct solutions of the quadratic equation ρ2−λρ−1 =
0. Then (3.6) implies

A(ρ1U + ξ) = ρ1(ρ1U + ξ), A(ρ2U + ξ) = ρ2(ρ2U + ξ)

since λρi + 1 = ρ2i , i = 1, 2. �

On the other hand, owing to Lemma 3.3 it follows from (3.17) that

(3.20) −c+ 3

4
g(FX, Y ) + g(FX,A2Y ) = λg(FX,AY ).

Inserting FX into (3.20) instead of X and using (2.6) and (3.6), we can easily
obtain

(3.21) A2X = λAX +
c+ 3

4
X − c− 1

4
{u(X)U + η(X)ξ}.

If there exists an eigenvector X ∈ Span{U, ξ}⊥ corresponding to the eigenvalue
ρi in Lemma 3.4, then we have from (3.21)

ρ2i − λρi −
c+ 3

4
= 0,

which combined with the fact that ρ2i − λρi = 1 yields c = 1.

Thus we have the main result.

Theorem. Let M be as in Lemma 3.1. If for any vector fields X,Y tangent to

M , the equality (3.1) holds on M and if multiplicity of one of the eigenvalues ρ1
and ρ2 appeared in Lemma 3.4 is not less than 2, then M is an (n+1)(n ≥ 3)-
dimensional unit sphere.

When c = 1, (3.21) reduces to A2X = λAX + X and consequently A
has exactly two eigenvalues ρ1 and ρ2. If n ≥ 3, multiplicity of one of the
eigenvalues ρ1 and ρ2 is not less than 2.

Combining Theorem K-P stated in Section 1 with Lemma 3.2 and the above
main Theorem, we have

Corollary ([4]). Let M be an (n + 1)(n ≥ 3)-dimensional contact CR-sub-

manifold of (n− 1) contact CR-dimension immersed in a (2m+1)-unit sphere
S2m+1. If for any vector fields X,Y tangent to M , the equality (3.1) holds on

M , then M is locally isometric to

S2n1+1(r1)× S2n2+1(r2) (r21 + r22 = 1)

for some integers n1, n2 with n1 + n2 = (n− 1)/2.
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