We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$$_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.
본 논문에서는 cascode 구조에 shunt peaking 기술을 접목시킨 밀리미터파 광대역 amplifier를 설계 및 제작하였다. 밀리미터파 광대역 cascode amplifier의 설계 및 제작을 위해서 $0.1{\mu}m\;{\Gamma}-gate$ GaAs PHEMT와 CPW 및 passive library를 개발하였다. 제작된 PHEMT는 최대 전달 컨덕턴스는 346.3 mS/mm, 전류이득 차단 주파수 ($f_T$)는 113 GHz, 그리고 최대공진 주파수($f_{max}$)는 180 GHz의 특성을 갖고 있다. 설계된 cascode amplifier는 회로의 발진을 막기 위해서 저항과 캐패시터를 common-rate 소자의 드레인에 병렬로 연결하였다. 대역폭의 확장 및 gain의 평탄화를 위해 바이어스 단들에 short stub 및 common-source 소자와 common-gate 소자 사이에 보상 전송선로를 삽입하고 최적화하였으며, 입출력 단은 광대역 특성을 갖는 정합회로로 설계하였다. 제작된 cascode amplifier의 측정결과, cascode 구조에 shunt peaking 기술을 접목시킴으로써 대역폭을 확장 및 gain을 평탄화 시킬 수 있다는 것을 확인하였다. 3 dB 대역폭은 34.5 GHz ($19{\sim}53.5GHz$)로 광대역 특성을 얻었으며, 3 dB대역 내에서 평균 6.5 dB의 $S_{21}$ 이득 특성을 나타내었다.
JSTS:Journal of Semiconductor Technology and Science
/
제5권3호
/
pp.210-219
/
2005
We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.
본 논문은 초광대역 코프래너 급전 모노폴 안테나를 이용한 능동 안테나 다이플렉서 구조를 제안한다. 제안된 다이플렉서 구조는 초고주파 시스템 집적 패키지 기술(RF System on Package: RF-SoP)을 이용한 것으로서 평면형 초광대역 모노폴 안테나와 능동 소자를 직접 연결법에 의해 연결하여 다이플렉서(diplexer)를 형성하는 방식이다. 이는 안테나 회로 성분과 능동 소자의 패키지 회로 성분으로 형성되는 통과 대역을 이용함으로써 별도로 추가된 대역 통과 필터 등의 회로 구조 없이 다이플렉서를 내장하여 구성하는 방식이다. 따라서 입력된 수신 신호의 주파수 대역에 따라 동작 회로가 분리되며, 분리된 수신 신호가 능동 소자의 동작에 의해 증폭되는 능동 안테나 다이플렉서(diplexer)로서 구성된다. FR-4 에폭시 기판 위에서 제작된 능동 안테나 다이플렉서의 특성을 측정한 결과, 2.4 GHz 수신 단자에서는 0.9 dB의 삽입 손실(insertion loss), 1.1 GHz(2.0{\sim}3.1\;GHz)$ 대역폭, 17.0 dB의 수신 신호 증폭 특성을 보여주었으며, 5.8 GHz 수신 단자에서는 0.8 dB의 삽입 손실, 650 MHz$(5.25{\sim}5.9\;GHz)$ 대역폭, 15.0 dB의 수신 신호 증폭 특성을 보여주었다 또한 -10.0 dB 이상의 주파수 분리(isolation) 특성과 -20.0 dB 이상의 고조파 성분(harmonics) 감쇄 특성을 나타내어, 제시된 능동 안테나 다이플렉서 구조가 설계된 동작을 하고 있음을 알 수 있었다.
본 논문에서는 초광대역(UWB)에서 사용 가능한 넓은 방사 슬롯 안테나의 소형화와 동시에 UWB 시스템과 IEEE 802.11 a/n 표준의 Wi-Fi 서비스를 사용하는 무선 랜 시스템 간의 간섭을 막기 위한 노치 구조에 대하여 연구하였다. 제안된 안테나는 기존 안테나의 넓은 슬롯을 공진 주파수의 $\lambda/2$ 길이에서 $\lambda/4$로 축소 설계하여 전체 크기를 약 72 % 감소시켰다. 그리고 T-모양의 CPW 급전 스터브를 최적화하여 3.0~11.8 GHz의 초광대역을 만족시켰다. 이 스터브 내부에 노치 구조인 2차 Hilbert curve 슬롯 라인을 만들어 5 GHz를 중심으로 4.9~5.6 GHz를 제거하였다. 최종적으로 FR4-epoxy 기판에 제작한 안테나는 $20{\times}15\;mm^2$이다. 반사 손실을 측정한 결과, Wi-Fi 대역이 제거된 3.2~11.8 GHz에서 -10 dB 이하를 만족하였으며, 선형적인 위상 특성과 안정된 군지연 특성, 그리고 무지향성의 방사 패턴을 잘 만족하였다.
도파로 급전 방법의 인쇄형 모노폴 구조를 응용하여 UWB대역인 이중 주파수 대역 프린트형 이중 모노폴 안테나를 설계 및 제작하였다. 이중대역을 얻기 위하여 기존의 단일 모노폴 구조를 수정한 이중 모노폴 구조를 제안하였다. 제안된 안테나는 기존의 모노폴 안테나와 동일한 무지향 복사 특성을 가지며 평면으로 구현되어 모노폴 안테나 보다 크기가 작고 높은 이득을 갖는다. 두개의 단일 모노폴은 상호 임피던스 매칭을 위한 스터브로 작용하여 임피던스 매칭이 용이하고 이에 따른 대역폭의 증가를 향상 시킬 수 있었다. 안테나의 대역폭은 VSWR$$\geq_-$$2를 기준하여 350MHz (1.69~2.04[GHz]z])와 2,670MHz (4.33~6[GHz]), 3980MHz (6.1~10.08[GHz])의 결과를 얻었다. 이는 PCS대역(1.75~1.87[GHz]) 과 UWB대역을 충족시킬 수 있다.
SoP-L 공정은 유전율이 상이한 재료를 이용하여 PCB 공정이 가능하고 다른 packaging 방법에 비해 공정 시간과 비용이 절약되는 잠정이 있다. 본 연구에서는 SoP-L 기술을 이용하여 Si 기판의 함몰에 판한 공정의 안정도와 함몰 시 제작된 때턴의 특성의 변화에 대해 관찰 하였다. Si 기판의 함몰에 Active device를 이용하여 특성의 변화를 살펴보고 공정의 안정도를 확립하려 했지만 Active device는 측정 시 bias의 확보와 특성의 민감한 변화로 인해 비교적 측정이 용이하고 공정의 test 지표를 삼기 위해 passive device 를 구현하여 함몰해 보았다. Passive device 의 제작 과정은 Si 기판 위에 spin coating을 통해 PI(Poly Imide)를 10um로 적층한 후에 Cr과 Au를 seed layer로 증착을 하였다. 그리고 photo lithography 공정을 통하여 photo resister patterning 후에 전해 Cu 도금을 거쳐 CPW 구조로 $50{\Omega}$ line 과 inductor를 형성하였다. 제작 된 passive device의 함몰 전 특성 추출 data와 SoP-L공정을 통한 함몰 후 추출 data 비교를 통해 특성의 변화와 공정의 안정도를 확립하였다. 차후 안정된 SoP-L 공정을 이용하여 Active device를 함몰 한다면 특성의 변화 없이 size 룰 줄이는 효과와 외부 자극에 신뢰도가 강한 기판이 제작 될 것으로 예상된다.
본 논문에서는 유전체 공진기와 마이크로스트립 라인 간의 결합 구조를 개선시켜 저위상 잡음을 갖는 전압제어 유전체 공진기 발진기(Vt-DRO: Voltage-tuned Dielectric Resonator Oscillator)를 설계, 제작하였다. 설계된 발진기는 유전체 공진기, 위상천이기, 증폭기로 구성된다. 발진기의 위상 잡음은 공진기의 군지연과 밀접하게 관계되며, 이러한 관계를 수식적으로 도출하고, 이를 예측하는 방법을 제안하였다. 유전체 공진기와 마이크로스트립 라인간의 결합 구조를 조정하여 약 53 nsec의 높은 군지연을 갖도록 설계하였다. 각 부의 측정은 측정의 편의성을 위해 웨이퍼 프로브를 이용하였으며, 이를 위하여 각 부의 입출력 포트를 CPW(Coplanar Waveguide)로 설계하였다. 각 부를 연결하여 측정한 S-파라미터는 개루프 발진 조건을 만족하였다. 설계된 개루프의 입출력을 연결하고 폐루프로 구성하여 전압 제어 유전체 공진기 발진기를 구현하였다. 측정 결과, 5.3 GHz의 발진 주파수에서 위상 잡음은 수식으로부터 도출한 값과 근사한, 100 kHz offset 주파수에서 -132.7 dBc/Hz를 얻었다. 이때 출력 전력은 약 4.5 dBm, 전기적 주파수 조정 범위는 0~10 V의 조정 전압에서 약 5 MHz를 보였다. PFTN-FOM(Power Frequency Tuning Normalized Figure of Merit)은 약 -31 dB를 보였다.
알루미늄 양극산화(aluminum anodization)의 선택적인 적용을 통하여 DRAM 소자를 위한 새로운 패키지 기판을 제작하였다. 에폭시 계열의 코어(core)와 구리의 적층 형태로 제작되는 일반적인 패키지 기판과는 달리 제안된 패키지 기판은 아래층 알루미늄(aluminum), 중간층 알루미나(alumina, $Al_2O_3$) 그리고 위층 구리(copper)로 구성된다. 알루미늄 기판에 양극산화 공정을 수행함으로써 두꺼운 알루미나를 얻을 수 있으며 이를 패키지 기판의 유전체로 사용할 수 있다. 알루미나층 위에 구리 패턴을 배치함으로써 새로운 2층 금속 구조의 패키지 기판을 완성하게 된다. 또한 알루미늄 양극산화를 선택적인 영역에만 적용하여 내부가 완전히 채워져 있는 비아(via) 구조를 구현할 수 있다. 패키지 설계 시에 비아 인 패드(via in pad) 구조를 적용하여 본딩 패드(bonding pad) 및 볼 패드(ball pad) 상에 비아를 배치하였다. 상기 비아 인 패드 배치 및 2층 금속 구조로 인해 패키지 기판의 배선 설계가 보다 수월해지고 설계 자유도가 향상된다. 새로운 패키지 기판의 주요 설계인자를 분석하고 최적화하기 위하여 테스트 패턴의 2차원 전자기장 시뮬레이션 및 S-파라미터 측정을 진행하였다. 이러한 설계인자를 바탕으로 모든 신호 배선은 우수한 신호 전송을 얻기 위해서 $50{\Omega}$의 특성 임피던스를 가지는 coplanar waveguide(CPW) 및 microstrip 기반의 전송선 구조로 설계되었다. 본 논문에서는 패키지 기판 구조, 설계 방식, 제작 공정 및 측정 등을 포함하여 양극산화 알루미늄 패키지 기판의 특성과 성능을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.