• Title/Summary/Keyword: CPU time

Search Result 946, Processing Time 0.028 seconds

Metastability Window Measurement of CMOS D-FF Using Bisection (이분법을 이용한 CMOS D-FF의 불안정상태 구간 측정)

  • Kim, Kang-Chul;Chong, Jiang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.273-280
    • /
    • 2017
  • As massive integration technology of transistors has been developing, multi-core circuit is fabricated on a silicon chip and a clock frequency is getting faster to meet the system requirement. But increasing the clock frequency can induce some problems to violate the operation of system such as clock synchronization, so it is very import to avoid metastability events to design digital chips. In this paper, metastability windows are measured by bisection method in H-spice depending on temperature, supply voltage, and the size of transmission gate with D-FF designed with 180nm CMOS process. The simulation results show that the metastability window(: MW) is slightly increasing to temperature and supply voltage, but is quadratic to the area of a transmission gate, and the best area ration of P and Ntransitor in transmission gate is P/N=4/2 to get the least MW.

Design and Implementation of Accelerator Architecture for Binary Weight Network on FPGA with Limited Resources (한정된 자원을 갖는 FPGA에서의 이진가중치 신경망 가속처리 구조 설계 및 구현)

  • Kim, Jong-Hyun;Yun, SangKyun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.225-231
    • /
    • 2020
  • In this paper, we propose a method to accelerate BWN based on FPGA with limited resources for embedded system. Because of the limited number of logic elements available, a single computing unit capable of handling Conv-layer, FC-layer of various sizes must be designed and reused. Also, if the input feature map can not be parallel processed at one time, the output must be calculated by reading the inputs several times. Since the number of available BRAM modules is limited, the number of data bits in the BWN accelerator must be minimized. The image classification processing time of the BWN accelerator is superior when compared with a embedded CPU and is faster than a desktop PC and 50% slower than a GPU system. Since the BWN accelerator uses a slow clock of 50MHz, it can be seen that the BWN accelerator is advantageous in performance versus power.

Fuzzy Logic-based Grid Job Scheduling Model for omputational Grid (계산 그리드를 위한 퍼지로직 기반의 그리드 작업 스케줄링 모델)

  • Park, Yang-Jae;Jang, Sung-Ho;Cho, Kyu-Cheol;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.49-56
    • /
    • 2007
  • This paper deals with grid job allocation and grid resource scheduling to provide a stable and quicker job processing service to grid users. In this paper, we proposed a fuzzy logic-based grid job scheduling model for an effective job scheduling in computational grid environment. The fuzzy logic-based grid job scheduling model measures resource efficiency of all grid resources by a fuzzy logic system based on diverse input parameters like CPU speed and network latency and divides resources into several groups by resource efficiency. And, the model allocates jobs to resources of a group with the highest resource efficiency. For performance evaluation, we implemented the fuzzy logic-based grid job scheduling model on the DEVS modeling and simulation environment and measured reduction rates of turnaround time, job loss, and communication messages in comparison with existing job scheduling models such as the random scheduling model and the MCT(Minimum Completion time) model. Experiment results that the proposed model is useful to improve the QoS of the grid job processing service.

  • PDF

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.

A Review on Smart Two Wheeler Helmet with Safety System Using Internet of Things

  • Ilanchezhian, P;Shanmugaraja, P;Thangaraj, K;Aldo Stalin, JL;Vasanthi, S
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.11-16
    • /
    • 2021
  • At the present time, the number of accidents has enlarged speedily and in country like India per day there are about 204 accidents occurred. Accidents of two-wheeler compose a foremost segment of every accident and it can be true for the reason that two-wheelers like bikes not able to produce as many as security measurements normally incorporated in cars, truks and bus etc. General main rootcost of the two-wheeler accidents happen only when people community not remember to wearing a device helmet and during the driving time feels like sleep condition, alcohol disbursement, many of the drivers doesn't know heavy vehicles like Loory and buses approaching into very closer to their two wheelers, contravention of two wheelers in traffic rules and regulations. Let's overcome the above situations; our important objective is to develop an intelligent system device that can successfully facilitate in avoidance of every kind of problems. Suppose any of the above stated situations occurs, at that moment how system device identify and represents the commanders and community, and finally the stated situation be able to taken care of straight away without any further delay. A smart intelligent helmet system is a defending head covering used by rider for making bike riding safer than earlier. This is finished by incorporating sophisticated features like detecting the usage of helmet by the rider, connected Bluetooth module in helmet. In order to maintain the temperature inside the helmet device we need to include CPU fan module inside the device. RF based helmet prevents road accidents and identify whether people community is not using a component helmet or used. Main responsibility of the system is to detect accidents by vibration sensors, accelerometers and also with the help of modules global positioning system and global system for mobile commnicaiton module. A wireless communication device used to discover the accident area site location and likewise notifying the two-wheeler drived people's relatives and short message text information passed to the positioned hospitals.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

Clinical validity and precision of deep learning-based cone-beam computed tomography automatic landmarking algorithm

  • Jungeun Park;Seongwon Yoon;Hannah Kim;Youngjun Kim;Uilyong Lee;Hyungseog Yu
    • Imaging Science in Dentistry
    • /
    • v.54 no.3
    • /
    • pp.240-250
    • /
    • 2024
  • Purpose: This study was performed to assess the clinical validity and accuracy of a deep learning-based automatic landmarking algorithm for cone-beam computed tomography (CBCT). Three-dimensional (3D) CBCT head measurements obtained through manual and automatic landmarking were compared. Materials and Methods: A total of 80 CBCT scans were divided into 3 groups: non-surgical (39 cases); surgical without hardware, namely surgical plates and mini-screws (9 cases); and surgical with hardware (32 cases). Each CBCT scan was analyzed to obtain 53 measurements, comprising 27 lengths, 21 angles, and 5 ratios, which were determined based on 65 landmarks identified using either a manual or a 3D automatic landmark detection method. Results: In comparing measurement values derived from manual and artificial intelligence landmarking, 6 items displayed significant differences: R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP, L1L to Me-GoL, and GoR-Gn/S-N (P<0.05). Of the 3 groups, the surgical scans without hardware exhibited the lowest error, reflecting the smallest difference in measurements between human- and artificial intelligence-based landmarking. The time required to identify 65 landmarks was approximately 40-60 minutes per CBCT volume when done manually, compared to 10.9 seconds for the artificial intelligence method (PC specifications: GeForce 2080Ti, 64GB RAM, and an Intel i7 CPU at 3.6 GHz). Conclusion: Measurements obtained with a deep learning-based CBCT automatic landmarking algorithm were similar in accuracy to values derived from manually determined points. By decreasing the time required to calculate these measurements, the efficiency of diagnosis and treatment may be improved.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.