• Title/Summary/Keyword: CPU 시간

Search Result 518, Processing Time 0.032 seconds

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Development and run time assessment of the GPU accelerated technique of a 2-Dimensional model for high resolution flood simulation in wide area (광역 고해상도 홍수모의를 위한 2차원 모형의 GPU 가속기법 개발 및 실행시간 평가)

  • Choi, Yun Seok;Noh, Hui Seong;Choi, Cheon Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.991-998
    • /
    • 2022
  • The purpose of this study is to develop GPU (Graphics Processing Unit) acceleration technique for 2-dimensional model and to assess the effectiveness for high resolution flood simulation in wide area In this study, GPU acceleration technique was implemented in the G2D (Grid based 2-Dimensional land surface flood model) model, using implicit scheme and uniform square grid, by using CUDA. The technique was applied to flood simulation in Jinju-si. The spatial resolution of the simulation domain is 10 m × 10 m, and the number of cells to calculate is 5,090,611. Flood period by typhoon Mitag, December 2019, was simulated. Rainfall radar data was applied to source term and measured discharge of Namgang-Dam (Ilryu-moon) and measured stream flow of Jinju-si (Oksan-gyo) were applied to boundary conditions. From this study, 2-dimensional flood model could be implemented to reproduce the measured water level in Nam-gang (Riv.). The results of GPU acceleration technique showed more faster flood simulation than the serial and parallel simulation using CPU (Central Processing Unit). This study can contribute to the study of developing GPU acceleration technique for 2-dimensional flood model using implicit scheme and simulating land surface flood in wide area.

Use of a Solution-Adaptive Grid (SAG) Method for the Solution of the Unsaturated Flow Equation (불포화 유동 방정식의 해를 위한 해적응격자법의 이용 연구)

  • Koo, Min-Ho
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • A new numerical method using solution-adaptive grids (SAG) is developed to solve the Richards' equation (RE) for unsaturated flow in porous media. Using a grid generation technique, the SAG method automatically redistributes a fixed number of grid points during the flow process, so that more grid points are clustered in regions of large solution gradients. The method uses the coordinate transformation technique to employ a new transformed RE, which is solved with the standard finite difference method. The movement of grid points is incorporated into the transformed RE, and therefore all computation is performed on fixed grid points of the transformed domain without using any interpolation techniques. Thus, numerical difficulties arising from the movement of the wetting front during the infiltration process have been substantially overcome by the new method. Numerical experiments for an one-dimensional infiltration problem are presented to compare the SAG method to the modified Picard method using a fixed grid. Results show that accuracy of a SAG solution using 41 nodes is comparable with the solution of the fixed grid method using 201 nodes, while it requires only 50% of the CPU time. The global mass balance and the convergence of SAG solutions are strongly affected by the time step size (Δt) and the weighting parameter (${\gamma}$) used for generating solution-adaptive grids. Thus, the method requires automated readjustment of Δt and ${\gamma}$ to yield mass-conservative and convergent solutions, although it may increase computational costs. The method can be effective especially for simulating unsaturated flow and other transport problems involving the propagation of a sharp-front.

  • PDF

Optimal Sequence Alignment Algorithm Using Space Division Technique (공간 분할 방법을 이용한 최적 서열정렬 알고리즘)

  • Ahn, Heui-Kook;Roh, Hi-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.397-406
    • /
    • 2007
  • The problem of finding an optimal alignment between sequence A and B can be solved by dynamic programming algorithm(DPA) efficiently. But, if the length of string was longer, the problem might not be solvable because it requires O(m*n) time and space complexity.(where, $m={\mid}A{\mid},\;n={\mid}B{\mid}$) For space, Hirschberg developed a linear space and quadratic time algorithm, so computer memory was no longer a limiting factor for long sequences. As computers's processor and memory become faster and larger, a method is needed to speed processing up, although which uses more space. For this purpose, we present an algorithm which will solve the problem in quadratic time and linear space. By using division method, It computes optimal alignment faster than LSA, although requires more memory. We generalized the algorithm about division problem for not being divided into integer and pruned additional space by entry/exit node concept. Through the proofness and experiment, we identified that our algorithm uses d*(m+n) space and a little more (m*n) time faster than LSA.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Parallel Processing of Multiple Queries in a Declustered Spatial Database (디클러스터된 공간 데이터베이스에서 다중 질의의 병렬 처리)

  • Seo, Yeong-Deok;Park, Yeong-Min;Jeon, Bong-Gi;Hong, Bong-Hui
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.44-57
    • /
    • 2002
  • Multiple spatial queries are defined as two or more spatial range queries to be executed at the same time. The primary processing of internet-based map services is to simultaneously execute multiple spatial queries. To improve the throughput of multiple queries, the time of disk I/O in processing spatial queries significantly should be reduced. The declustering scheme of a spatial dataset of the MIMD architecture cannot decrease the disk I/O time because of random seeks for processing multiple queries. This thesis presents query scheduling strategies to ease the problem of inter-query random seeks. Query scheduling is achieved by dynamically re-ordering the priority of the queued spatial queries. The re-ordering of multiple queries is based on the inter-query spatial relationship and the latency of query processing. The performance test shows that the time of multiple query processing with query scheduling can be significantly reduced by easing inter-query random seeks as a consequence of enhanced hit ratio of disk cache.

Design and Implementation of the SSL Component based on CBD (CBD에 기반한 SSL 컴포넌트의 설계 및 구현)

  • Cho Eun-Ae;Moon Chang-Joo;Baik Doo-Kwon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.3
    • /
    • pp.192-207
    • /
    • 2006
  • Today, the SSL protocol has been used as core part in various computing environments or security systems. But, the SSL protocol has several problems, because of the rigidity on operating. First, SSL protocol brings considerable burden to the CPU utilization so that performance of the security service in encryption transaction is lowered because it encrypts all data which is transferred between a server and a client. Second, SSL protocol can be vulnerable for cryptanalysis due to the key in fixed algorithm being used. Third, it is difficult to add and use another new cryptography algorithms. Finally. it is difficult for developers to learn use cryptography API(Application Program Interface) for the SSL protocol. Hence, we need to cover these problems, and, at the same time, we need the secure and comfortable method to operate the SSL protocol and to handle the efficient data. In this paper, we propose the SSL component which is designed and implemented using CBD(Component Based Development) concept to satisfy these requirements. The SSL component provides not only data encryption services like the SSL protocol but also convenient APIs for the developer unfamiliar with security. Further, the SSL component can improve the productivity and give reduce development cost. Because the SSL component can be reused. Also, in case of that new algorithms are added or algorithms are changed, it Is compatible and easy to interlock. SSL Component works the SSL protocol service in application layer. First of all, we take out the requirements, and then, we design and implement the SSL Component, confidentiality and integrity component, which support the SSL component, dependently. These all mentioned components are implemented by EJB, it can provide the efficient data handling when data is encrypted/decrypted by choosing the data. Also, it improves the usability by choosing data and mechanism as user intend. In conclusion, as we test and evaluate these component, SSL component is more usable and efficient than existing SSL protocol, because the increase rate of processing time for SSL component is lower that SSL protocol's.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

혼합모델 조립라인의 작업순서 결정

  • 최종열
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.106-107
    • /
    • 1993
  • 오늘날 다양한 고객욕구를 충족시키기 위해 재공품재고 없이 단일조립라인에서 다양한 제품들을 생산하는 혼합모델조립(MMAL)방식이 많이 사용되고 있다. 일반적으로 MMAL은 모든 일감에 대해 동일한 작업장, 작업시간이 동일한 여러가지 사양중 하나를 선택할 수 있는 작업장, 그리고 작업시간이 상이한 작업들을 수행하는 작업장으로 구성되어 있다. 첫째 유형의 작업장에서의 작업순서결정은 전혀 문제가 되지 않는다. 그러나 두번째 유형의 작업장에서는 작업순서에 따라 작업준비비용이 달라지게 된다. 세번째 유형의 작업장에서는 필요로 하는 작업유형의 종류와 양에 따라 원활한 흐름에 변화를 가져온다. 조립라인의 일괄작업순서가 작업장의 처리능력보다 많은 부하를 초래하면 후속 작업장의 원활한 작업을 위하여, 해당 작업장의 작업자들을 지원하는 보완작업(utility work)을 행하여야 하나, 타 작업장에서 해당조립품의 작업시간에 따라 해당작업장의 부하는 평활화될 수 있으므로 보완작업량은 통제가능하다. 따라서 준비비용과 보완작업 비용의 합을 최소화하는 일정계획이 요구된다. 이에 관한 연구들이 행해져오고 있으나, 두가지 비용의 합을 최소화하는 연구는 아직 많이 진척되지 못하고 있는 실정이다. 선행연구들에서 이미 제시된 TSP개념을 이용한 비선형2진 혼합정수계획모델인 수리모델을 이용할 수 있다. 그러나 이 모델은 너무 복잡하여 현실문제를 적용할 경우 계산이 불가능하다. 따라서 단시간에 최적에 가까운 해를 구하기 위한 휴리스틱 기법의 개발이 요구된다. 따라서 본 연구에서는 이를 위한 기초연구로서 우선 준비비용을 고려하지 않는 경우의 휴리스틱기법을 개발하는데 초점을 맞추었다. 특히 본 연구에서는 작업장에서 행해지는 작업유형은 기본작업과 여러가지 선택작업이 있을 수 있으므로 선행연구를 확장하여 기본작업과 두가지의 선택작업이 행해지는 경우에 촛점을 맞추었다. 그리하여 다작업장의 휴리스틱에 의거한 작업순서 결정을 위해 우선 BB의 상한을 구하는 연구를 행했다. 이를 위해 우선 단일작업장에서 야기될 수 있는 모든 상황을 고려한 최적 작업순서 결정규칙을 연구했으며, 이의 증명을 위해 이 규칙에 의거했을 때의 보완작업량이 최소가 된다는 것을 밝혔다. 보완작업 계산의 효율성을 제고하기 위해 과부하(violation)개념을 도입하였으며, 작업유형이 증가된 상황에서도 과부하 개념이 보완작업량을 충분히 반영할 수 있음을 밝혔다. 본 연구에서 제시한 최적 작업순서 규칙에 의거했을 때 야기될 수 있는 여러가지 경우의 과부하를 모두 계산했다. 앞에서 개발된 단일작업량의 최적 작업순서 결정규칙을 이용하여 다작업장의 문제를 실험했다. 이 문제는 규모가 매우 크므로 Branch & Bound를 이용하였으며, 각 가지에서 과부하량이 최적인 경우만을 고려하는 휴리스틱을 택하여 실험자료를 이용하여 여러 회 반복실험을 행했다. 그리고 본 연구의 성과를 측정하기 위해 휴리스틱 기법시 소요되는 평균 CPU time 범위에서, 랜덤 작업순서에 따른 작업할당을 반복실험하여 이중 가장 좋은 해와 비교했다. 그러나 앞으로 다작업장 문제를 다룰 때, 각 작업장 작업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.

  • PDF

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF