• Title/Summary/Keyword: CPS modeling

Search Result 20, Processing Time 0.031 seconds

An ETRI CPS Modeling Language for Specifying Hybrid Systems (하이브리드 시스템을 명세하기 위한 ETRI CPS 모델링 언어)

  • Yoon, Sanghyun;Chun, In-geol;Kim, Won-Tae;Jo, Jaeyeon;Yoo, Junbeom
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.823-833
    • /
    • 2015
  • Hybrid system is a dynamic system that is composed of both a continuous and discrete system, suitable for automobile, avionic and defense systems. Various modeling languages and their supporting tools have been proposed and used in the hybrid system. The languages and tools have specific characteristics for their purpose. Electronics and Telecommunications Research Institute (ETRI) proposed a hybrid system modeling language, ECML (ETRI CPS Modeling Language). ECML extends DEV&DESS (Differential Event and Differential Equation Specified System) formalism with consideration of CPS (Cyber-Physical System), which supports modeling and simulation. In this paper, we introduce ECML and suggest a formal definition. The case study specifies a simple vehicle model using the suggested formal definition.

System of Systems Approach to Formal Modeling of CPS for Simulation-Based Analysis

  • Lee, Kyou Ho;Hong, Jeong Hee;Kim, Tag Gon
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.175-185
    • /
    • 2015
  • This paper presents a system-of-systems (SoS) approach to the formal modeling of a cyber-physical system (CPS) for simulation-based analysis. The approach is based on a convergence technology for modeling and simulation of a highly complex system in which SoS modeling methodology, hybrid systems modeling theory, and simulation interoperation technology are merged. The methodology maps each constituent system of a CPS to a disparate model of either continuous or discrete types. The theory employs two formalisms for modeling of the two model types with formal specification of interfaces between them. Finally, the technology adapts a simulation bus called DEVS BUS whose protocol synchronizes time and exchange messages between subsystems simulation. Benefits of the approach include reusability of simulation models and environments, and simulation-based analysis of subsystems of a CPS in an inter-relational manner.

DEV&DESS-Based Real-Time Distributed Simulation Method Using DDS for Design Verification of Cyber-Physical Systems (CPS 설계 검증을 위한 DDS 및 DEV&DESS 기반의 실시간 분산 시뮬레이션 방법)

  • Kim, Jin Myoung;Lee, Hae Young;Chun, Ingeol;Kim, Won-Tae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • CPS (cyber-physical systems) which consists of connected and diverse embedded systems and physical systems are a new paradigm. Traditional systems were usually considered to be passive and dumb parts in physical systems, but with CPS, we have to take into account what are being moved or changed in the physical systems. So, as increasing the complexity of CPS, potential errors in the systems also increase. In this paper, for enhancing the reliability of CPS, we exploit an executable-model-based design methodology and propose a distributed simulation method to verify the design of CPS. For the design of the systems including discrete and continuous factors, we apply DEV&DESS formalism and simulate models in distributed simulation environments through DDS middleware. We also illustrate the applications of CPS with our modeling tool.

FMI based Real-time CPS Distributed Simulation Framework using OMG DDS middleware (OMG DDS 미들웨어를 이용한 FMI기반 실시간 CPS 분산 시뮬레이션 프레임워크)

  • Hong, Seokjoon;Joe, Inwhee;Kim, Wontae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.6-13
    • /
    • 2018
  • To develop highly dependable CPS, M&S(modeling and simulation) is very important. It is not easy to model any CPS whole system in a single simulation tool because each simulation tool is optimized for modeling each different part of the CPS. The FMI is the standard for M&S between different simulation tools. The DDS is a communication middleware suitable for large-scale real-time data transmission. In this paper, we proposed FMI based CPS real-time distributed simulaton framework using DDS. To evaluate the performance of the proposed framework, we performed distributed simulation using IEEE HLA/RTI and OMG DDS middleware and measured and compared the execution time of the entire simulation. From the simulation results, we can confirm that the simulation execution time using DDS is at least 1.14 times faster compared to execution time using HLA/RTI.

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

A Research on Designing an Autonomic Control System Towards High-Reliable Cyber-Physical Systems (고신뢰 CPS를 위한 자율제어 시스템에 관한 연구)

  • Park, Jeongmin;Kang, Sungjoo;Chun, Ingeol;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.347-357
    • /
    • 2013
  • Cyber-Physical system(CPS) is characterized by collaborating computational elements controlling physical entities. In CPS, human desire to acquire useful information and control devices anytime and anywhere automatically has increased the necessity of a high reliable system. However, the physical world where CPS is deployed has management complexity and maintenance cost of 'CPS', so that it is impossible to make reliable systems. Thus, this paper presents an 'Autonomic Control System towards High-reliable Cyber-Physical Systems' that comprise 8-steps including 'fault analysis', 'fault event analysis', 'fault modeling', 'fault state interpretation', 'fault strategy decision', 'fault detection', 'diagnosis&reasoning' and 'maneuver execution'. Through these activities, we fascinate to design and implement 'Autonomic control system' than before. As a proof of the approach, we used a ISR(Intelligent Service Robot) for case study. The experimental results show that it achieves to detect a fault event for autonomic control of 'CPS'.

A modeling analysis of call processing capacity of CPS (통신처리스스템의 호처리 용량 모델링 및 분석)

  • Hong, Ryong-Pyo;Huh, Jae-Doo;Lee, Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2381-2387
    • /
    • 1997
  • The Communication Processing Systems(CPS) is a gateway that supports 01410 hitel service by connecting the public switched telephone network(PSTN) with the public switched data network(PSDN). The CPS is made the meausred rate accounting method for the biling after extracting the originating numbers from the nearest local PSTN. In this paper, a numerical simulation is carried out on the offered traffic per user on the telephone access part of the CPS according to change of call loss probability and also propose the proper number of channels based on the simulation results.

  • PDF

Simultaneous modeling of mean and variance in small area estimation

  • Kim, Myungjin;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1423-1431
    • /
    • 2016
  • When the sample size in a certain domain is too small to produce adequate information, small area model with random effects is usually used. Also, if we do not consider an inherent pattern which data possess, it considerably affects inference. In this paper, we mainly focus on modeling to handle increased variation of the Current Population Survey (CPS) median income as the Internal Revenue Service (IRS) mean income increases. In a hierarchical Bayesian framework, most estimations are carried out through the Gibbs sampler while the grid method is used to generate parameters from non-standard form. Numerical study indicates that the performance of proposed model is better than that of CPS method in terms of four comparison measurements.

Model-based Autonomic Computing Framework for Cyber-Physical Systems (CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크)

  • Kang, Sungjoo;Chun, Ingeol;Park, Jeongmin;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.

Model-based Specification of Non-functional Requirements in the Environment of Real-time Collaboration Among Multiple Cyber Physical Systems (사이버 물리 시스템의 실시간 협업 환경에서 소프트웨어 비기능 요구사항의 모델 기반 명세)

  • Nam, Seungwoo;Hong, Jang-Eui
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • Due to the advent of the 4th Industrial Revolution, it is imperative that we aggressively continue to develop state-of-the-art, cutting edge ICT technology relative to autonomous vehicles, intelligent robots, and so forth. Especially, systems based on convergence IT are being developed in the form of CPSs (Cyber Physical Systems) that interwork with sensors and actuators. Since conventional CPS specification only expresses behavior of one system, specification for collaboration and diversity of CPS systems with characteristics of hyper-connectivity and hyper-convergence in the 4th Industrial Revolution has been insufficiently presented. Additionally, behavioral modeling of CPSs that considers more collaborative characteristics has been unachieved in real-time application domains. This study defines the non-functional requirements that should be identified in developing embedded software for real-time constrained collaborating CPSs. These requirements are derived from ISO 25010 standard and formally specified based on state-based timed process. Defined non-functional requirements may be reused to develop the requirements for new embedded software for CPS, that may lead to quality improvement of CPS.