DOI QR코드

DOI QR Code

FMI based Real-time CPS Distributed Simulation Framework using OMG DDS middleware

OMG DDS 미들웨어를 이용한 FMI기반 실시간 CPS 분산 시뮬레이션 프레임워크

  • Hong, Seokjoon (Dept. of Computer Software, Hanyang University) ;
  • Joe, Inwhee (Dept. of Computer Software, Hanyang University) ;
  • Kim, Wontae (Dept. of Computer Science and Engineering, Koreatech University)
  • Received : 2018.03.09
  • Accepted : 2018.03.28
  • Published : 2018.03.31

Abstract

To develop highly dependable CPS, M&S(modeling and simulation) is very important. It is not easy to model any CPS whole system in a single simulation tool because each simulation tool is optimized for modeling each different part of the CPS. The FMI is the standard for M&S between different simulation tools. The DDS is a communication middleware suitable for large-scale real-time data transmission. In this paper, we proposed FMI based CPS real-time distributed simulaton framework using DDS. To evaluate the performance of the proposed framework, we performed distributed simulation using IEEE HLA/RTI and OMG DDS middleware and measured and compared the execution time of the entire simulation. From the simulation results, we can confirm that the simulation execution time using DDS is at least 1.14 times faster compared to execution time using HLA/RTI.

고신뢰 CPS 개발을 위해서는 M&S는 매우 중요하다. 각각의 CPS 시스템의 다른 부분을 모델링하기 위해 각각의 다른 시뮬레이션 프로그램들을 사용하기 때문에 어떤 CPS 전체 시스템을 하나의 시뮬레이션 툴에서 모델링하기는 쉽지 않다. FMI는 다른 시뮬레이션 툴들 간에 M&S를 위한 표준이다. 또한, DDS는 대규모의 실시간 데이터 전송에 적합한 통신 미들웨어이다. 따라서 이 논문에서는 DDS를 이용하는 FMI기반의 CPS 실시간 분산 시뮬레이션 프레임워크를 제안한다. 제안하는 프레임워크의 성능 평가를 위해서 IEEE HLA/RTI와 OMG DDS 미들웨어를 사용해서 분산 시뮬레이션을 수행하고 전체 시뮬레이션 수행 시간을 측정하고 비교해보았다. 성능 평가 결과를 통해서 DDS를 사용하는 시뮬레이션 수행 속도가 HLA/RTI를 사용하는 것에 비해 최소 1.14배 이상 빠른 것을 확인할 수 있었다.

Keywords

References

  1. J. A. Sokolowski, C. M. Banks, Principles of modeling and simulation: a multidisciplinary approach. John Wiley & Sons, 2011
  2. J. Banks, Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. Wiley, New York, NY, USA, 1998.
  3. Functional mock-up interface for model exchange and co-simulation, Version 2.0, Information Tech for European Advancement, Tech. Rep., Modelisar, Aug 2012.
  4. C. Lina, Z. Qiang, "The Design and Implementation of real-time HILS based on RTX platform" Industrial Informatics (INDIN), 2012 10th IEEE conference, 2012, pp276-280
  5. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Federate Interface Specification, IEEE Std. 1516.1-2000, Aug. 2010.DOI: 10.1109/IEEESTD.2010.5557728
  6. Data Distribution Service for Real-time Systems Specification, Ver 2.2, OMG, 2014.
  7. J. R. M. Salio, Real Time Simulation with HLA and DDS, Nads, 2012
  8. S. Chatzivasileiadis, M. Bonvini, J. Matanza, R. Yin, T. S. Nouidui, E. C. Kara, R. Parmar, D. Lorenzetti, M. Wetter, S. Kiliccote, "Cyber-physical modeling of distributed resources for distribution system operations", Proc. IEEE, vol. 104, no. 4, pp. 789-806, Apr. 2016.DOI: 10.1109/JPROC.2016.2520738
  9. A. Garro, A. Falcon, "On the integration of HLA and FMI for supporting interoperability and reusability in distributed simulation," SpringSim-TES/DEVS, 2015, pp. 9-16.
  10. "CERTI," https://savannah.nongnu.org/ projects/certi
  11. "OpenDDS," http://www.opendds.org
  12. "QTronic. FMU SDK (FMU Software DevelopmentKit)," http://www.qtronic.de/de/fmusk.html