• Title/Summary/Keyword: CP2c

Search Result 754, Processing Time 0.033 seconds

Synthesis and Characterization of 1,4-Diimine Complexes of 1,2,3,4,5-Pentamethylcyclopentadienylrhodium and iridium

  • Paek, Cheol-Ki;Ko, Jae-Jung;Uhm, Jae-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.980-984
    • /
    • 1994
  • Monomeric rhodium and iridium diimine complexes $Cp^*M(HNRNH)(Cp^*$ = 1,2,3,4,5-pentamethylcyclopentadienyl : (M=lr; R=o-$C_6H_4 (1a), 4,5-(CH_3)_2-C_6H_2-1,2 (1b), 4,5-(Cl)_2-C_6H_2-1,2$ (1c), NCC=CCN-1,2 (1d): M=Rh; R=NCC=CCN-1,2 (1e)) have been synthesized from $[CP^*MCl_2]_2$ and 2 equiv. of diamine in the presence of $NEt_3$. The Crystal structure of 1a was determined by X-ray diffraction method : 1a was crystallized in the monoclinic system, space group $P2_{1/c}$, with lattice constants a=9.543 (1) ${\AA}$, b=16.286 (1) ${\AA}$, c=10.068 (1) ${\AA}$ and ${\beta}$=99.25 (1), with Z= 4. Least-squares refinement of the structure led to R factor of 0.049. The coordination sphere of rhodium and iridium can be described as a 2-legged piano-stool. All complexes are highly colored. Electrochemical studies show that 1d and 1e display quasi-reversible reduction and 1a-1c display irreversible reductions, suggesting that the acceptor orbital might be localized on the diimine ring.

Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium Colwellia psychrerythraea 34H

  • Nugroho, Wahyu Sri Kunto;Kim, Dong-Woo;Han, Jong-Cheol;Hur, Young Baek;Nam, Soo-Wan;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2087-2097
    • /
    • 2016
  • Most cold-adapted enzymes possess higher $K_m$ and $k_{cat}$ values than those of their mesophilic counterparts to maximize the reaction rate. This characteristic is often ascribed to a high structural flexibility and improved dynamics in the active site. However, this may be less convincing to cold-adapted metabolic enzymes, which work at substrate concentrations near $K_m$. In this respect, cold adaptation of a shikimate kinase (SK) in the shikimate pathway from psychrophilic Colwellia psychrerythraea (CpSK) was characterized by comparing it with a mesophilic Escherichia coli homolog (EcSK). The optimum temperatures for CpSK and EcSK activity were approximately $30^{\circ}C$ and $40^{\circ}C$, respectively. The melting points were $33^{\circ}C$ and $45^{\circ}C$ for CpSK and EcSK, respectively. The ${\Delta}G_{H_2O}$ (denaturation in the absence of denaturing agent) values were 3.94 and 5.74 kcal/mol for CpSK and EcSK, respectively. These results indicated that CpSK was a cold-adapted enzyme. However, contrary to typical kinetic data, CpSK had a lower $K_m$ for its substrate shikimate than most mesophilic SKs, and the $k_{cat}$ was not increased. This observation suggested that CpSK may have evolved to exhibit increased substrate affinity at low intracellular concentrations of shikimate in the cold environment. Sequence analysis and homology modeling also showed that some important salt bridges were lost in CpSK, and higher Arg residues around critical Arg 140 seemed to increase flexibility for catalysis. Taken together, these data demonstrate that CpSK exhibits characteristics of cold adaptation with unusual kinetic parameters, which may provide important insights into the cold adaptation of metabolic enzymes.

Effects of Evaporative Water-loss from Cultural Pots on Growth of Pot-grown Ornamental Plants (화분(花盆)의 수분증발(水分蒸發)이 분식화훼류(盆植花卉類)의 생육(生育)에 미치는 영향(影響))

  • Suh, Youn-gkyo
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.317-343
    • /
    • 1977
  • This study was carried out to obtain the informations about evaporation from pot, soil temperature and soil atmosphere composition in pot, and the effect on the growth of nine ornamental species using seven different containers. The investigated containers were clay pot(CP), clay pot painted in green(CP-P), varnished clay pot(CP-V), polyethylene film inserting in clay pot(CP-PI), clay pot mulched with black polyethylene film(CP-PM), porcelain pot(POP), and plastic pot(PLP). Nine ornamental species were balsam(Impatiens balsamina), chrysanthemum(Chrysanthemum morifolium), cosmos(Cosmos bipinatus), English ivy(Hedera helix), geranium(Pelargonium zonale), kochia(Kochia scoparia var. trichophila), marigold(Tagetes patula), ornamental kale(Brassica oleraceae var. acephala), and salvia (Salvia splendens). The results obtained are summarized as follows: 1. Dry weight of all tested species grown in PLP, POP, CP-P, CP-V and CP-PI was heavier than that of CP. 2. Plant height in nine tested species grown in PLP, POP, CP-P, CP-V, and CP-PI was taller than that of CP. 3. Geranium grown in PLP, POP, CP-P, and CP-V gave more number of leaf than that of CP. 4. The number of flower in balsam grown in PLP, POP, CP-P, CP-V and CP-PI was more than that of CP. The result from marigold was very similar to this tendency. Spike length and floret number in salvia gave the same tendency, but its spike number was not different among containers used. 5. The average diurnal evaporation from PLP and POP was about 43% of that of CP. About two third of total evaporation from CP was through pot wall. 6. The evaporation rate from the slowest to the highest was PLP, POP, CP-P, CP-V, CP-PI, CP-PM and CP. Containers inhibiting evaporation through pot wall hold more soil moisture than CP from one day after water supply. 7. The more evaporative water-loss from containers gave the lower soil temperature. The variation of soil temperature among containers was higher during the day than the night. 8. The $O_2$ concentration of soil atmosphere in CP was higher than that of nonporous containers, and the difference between them was 0.40-1.12%. The range of the $O_2$ concentration 17.95~19.62%. The $CO_2$ concentration of soil atmosphere in CP was lower than that of nonporous containers, and its range was 0.59-1.76%. This deviation in soil atmosphere composition did not influenced on the growth of plants. 9. There was a possitive correlation between the amount of soil water and the plant growth. 10. Plant grown on CP gave more total nitrogen content in top growth than that on PLP. C/N ratio was somewhat low in plant on CP. From the above results, $O_2$ and $CO_2$ concentration in soil atmosphere did not gave enough deviation to the extent which affect the plant growth. The effect of soil moisture on the plant growth using different containers was the far-most significant factor from this investigation. Therefore, it was obious that the utilization of the nonporous container might save the cost for water supply and reduce the production cost of the pot-grown ornamental plant in Korea eventually.

  • PDF

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

Chloroplast genome of the conserved Aster altaicus var. uchiyamae B2015-0044 as genetic barcode

  • Lee, Minjee;Yi, Jae-Sun;Park, Jihye;Lee, Jungho
    • Journal of Species Research
    • /
    • v.10 no.2
    • /
    • pp.154-158
    • /
    • 2021
  • An endemic endangered species, Aster altaicus var. uchiyamae (Danyang aster) B2015-0044, is cultivated at the Shingu Botanical Garden, which serves as the ex situ conservation institution for this species. In this work, we sequenced the chloroplast genome of A. altaicus var. uchiyamae B2015-0044. We found that the chloroplast (cp) genome of B2015-0044 was 152,457 base pairs(bps) in size: 84,247 bps of large single copy regions(LSC), 25,007 bps of inverted repeats(IRs), and 18,196 bps of small single copy regions. The B2015-0044 cp genome contains 79 protein-coding genes (PCGs), 4 RNA genes, 29 tRNA genes, and 3 pseudogenes. These results were identical to a previously reported cp genome (Park et al., 2017), except for two sites in introns and three in intergenic spacer (IGS) regions. For the intronic differences, we found that clpP.i1 had a 1-bp small simple repeat (SSR) (T) and petD.i had a 3-bp SSR (ATT). We found 1-bp SSRs in the IGSs of trnT_ggu~psbD and psbZ~trnG_gcc, C and A, respectively. The IGS of(ndhF)~rpl32 had a SNP. Based on our results, the cp genome of the A. altaicus var. uchiyamae can be classified into two genotypes, [C]1-[A]12-[T]12-[ATT]4-C and [C]2-[A]11-[T]11-[ATT]2-A.

Comparison of the ability of Reciproc and Reciproc Blue instruments to reach the full working length with or without glide path preparation

  • Adiguzel, Mehmet;Tufenkci, Pelin
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.41.1-41.7
    • /
    • 2018
  • Objectives: The purpose of the present study was to compare the mean preparation times and frequency with which Reciproc and Reciproc Blue instruments reached the full working length in mandibular molars, with or without glide path preparation. Materials and Methods: Previously untreated mesiobuccal and mesiolingual canals with completely formed apices were randomly divided into 6 groups (n = 50) depending on the usage of Reciproc (RC; VDW), Reciproc Blue (RC Blue; VDW), C-Pilot (CP; VDW), and R-Pilot (RP; VDW) files: RC, RC Blue, RC + C-Pilot (RC-CP), RC-Blue + C-Pilot (RC Blue-CP), RC+R-Pilot (RC-RP), and RC Blue + R-Pilot (RC Blue-RP). A glide path was prepared using the hand-operated C-Pilot or the machine-operated R-Pilot instruments, respectively. The ${\chi}^2$ test, analysis of variance, and the Tukey post hoc test were used for statistical comparisons. Results: No statistically significant differences were observed in the distribution of the frequency of reaching the full working length in the RC (94%), RC Blue (88%), RC-CP (94%), RC Blue-CP (90%), RC-RP (96%), and RC Blue-RP (92%) groups (p > 0.05). Conclusions: Preparation of a glide path did not have a significant effect on reaching the full working length using these systems.

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti (Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구)

  • Kim, Yun-Jong;Kim, Taik-Nam;Lee, Sung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

Structural characteristics of [N(CH3)4]2CdCl4 determined by 1H MAS NMR, 13C CP/ MAS NMR, and 14N NMR

  • Lee, Seung Jin;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • The structural geometry of $[N(CH_3)_4]_2CdCl_4$ in a hexagonal phase is studied by $^1H$ MAS NMR, $^{13}C$ CP/MAS NMR, and $^{14}N$ NMR. The changes in the chemical shifts for $^{13}C$ and $^{14}N$ in the hexagonal phase are explained by the structural geometry. In addition, the temperature dependencies of the spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for $^1H$ MAS NMR and $^{13}C$ CP/MAS NMR are measured.

Feeding Turkey Poults with Starter Feed and Whole Wheat or Maize in Free Choice Feeding System: Its Effects on Their Performances

  • Erener, G.;Ocak, N.;Garipoglu, A.V.;Sahin, A.;Ozturk, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.86-90
    • /
    • 2006
  • This study was carried out to determine the effects of free choice feeding of starter feed and whole cereals on the growth of turkey poults. Two hundred-seventy poults (7-d old) were divided into 3 treatment groups each with 3 replications containing 15 males and 15 females. Control poults (C) were fed only on starter feed (280 g CP and 11.7 MJ ME/kg). Treatments for choice-fed turkey poults were offered a choice of a starter feed and wheat (120 g CP and 12.3 MJ ME/kg) for wheat selecting (WS) or maize (83 g CP and 13.9 MJ ME/kg) for maize selecting (MS) group in separate feeders. Final live weight (2,280.7 g for the C vs. 2,374.3 and 2,324.6 g for the WS and MS), daily gain (39.21 g vs. 40.87 and 39.99 g) and total feed intake (95.2 g vs. 103.2 and 97.9 g) in the WS poults were significantly higher (p<0.05) than those of the C group, but feed conversion ratio was not significantly different between the treatments. The proportional intakes of cereals vs. total feed intake were 11% in both the WS and MS group. The amount of protein intake in the C group (280 g CP/kg diet) was significantly (p<0.05) higher than that in WS and MS groups (263 and 259 g CP/kg diet, respectively) whilst the ME intake in the C group (11.7 MJ/kg diet) was significantly (p<0.05) lower than that in MS group (11.9 MJ/kg diet). Our results showed that turkey poults fed starter feed and whole wheat in a free choice feeding system have a higher efficiency in terms of daily gain, final live weight, and an economic advantage may be obtained from free choice feeding due to a reduced protein intake and feed cost.

Structural assessment of the tetramerization domain and DNA-binding domain of CP2c

  • Jo, Ku-Sung;Ryu, Ki-Sung;Yu, Hee-Wan;Lee, Seu-Na;Kim, Ji-Hun;Kim, Eun-Hee;Wang, Chae-Yeon;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.119-124
    • /
    • 2018
  • Although the transcription factor CP2c has been recently validated as a promising target for development of novel anticancer therapy, its structure has not been solved yet. In the present study, the purified recombinant protein corresponding to the tetramerization domain of CP2c appeared to be well folded, whereas the Elf-1 domain showed a largely unfolded conformation. Particularly, the Elf-1 domain, which contains the putative DNA-binding region, showed a conformational equilibrium between relatively less-ordered and well-ordered conformers. Interestingly, addition of zinc shifted the equilibrium to the relatively more structured conformer, whereas zinc binding decreased the overall stability of the protein, leading to a promoted precipitation. Likewise, a dodecapeptide that has been suggested to bind to the Elf-1 domain also appeared to shift the conformational equilibrium and to destabilize the protein. These results constitute the first structural characterization of the CP2c domains and newly suggest that zinc ion might be involved in the conformational regulation of the protein.