• Title/Summary/Keyword: CP-Titanium

Search Result 113, Processing Time 0.022 seconds

Surface Characteristics and Biocompatibility of Titanium Coated with Dentin-derived Hydroxyapatite

  • Kim, Hae-Jin;Son, Mee-Kyung;Lee, Kyung-Ku;Lee, Bo-Ah;Kim, Young-Joon
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The aim of this study was to evaluate surface characteristics and biological properties of the dentin -derived hydroxyapatite (HA) coating on titanium substrate. Dentinderived HA was obtained from extracted human teeth using a calcination method at $850^{\circ}C$. The commercially pure titanium (cp-Ti, ASTM Grade II) was used as a metallic substrate and a radio frequency magnetron sputtering method was employed as a coating method. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were utilized to investigate the coating aspects and composition. Atomic forced microscopy (AFM) and a surface profiler were used to assess the surface morphology and roughness. Corrosion tests were performed in phosphate-buffered saline at a $36.5{\pm}1^{\circ}C$ in order to determine the corrosion behavior of the uncoated and coated specimens. The biocompatibility of dentin-derived HA coated specimens with fetal rat calvarial cells and human gingival fibroblasts was assessed by SEM and cell proliferation analysis. The results showed that the dentin-derived HA coatings appeared to cover thinly and homogeneously the surfaces without changing of the titanium substrate. The EDX analysis of this the coating surface indicated the presence of Ca and P elements. The mean surface roughness of cp-Ti and dentin-derived coating specimens was $0.27{\mu}m$ and, $1.7{\mu}m$, respectively. Corrosion tests indicated a stable passive film of the dentin-derived HA coating specimens. SEM observations of fetal rat calvarial cells and human fibroblast cells on coated surfaces showed that the cells proliferated and developed a network of dense interconnections. The cells on all specimens proliferated actively within the culture period, showing good cell viability. At day 1 and 3, dentin-derived coating specimens showed 89% and 93% cell viability, respectively, when normalized to cp-Ti specimens. These results suggest that dentin-derived HA coating using the RF magnetron sputtering method has good surface characteristics and biocompatibility.

Effect of Sintering Temperature on Microstructure and Mechanical Properties for the Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 소결 온도의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Jang, Min-Hyeok;Yoon, Ji-Hye;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • The evolution of sinterability, microstructure and mechanical properties for the spark plasma sintered(SPS) Ti from commercial pure titanium(CP-Ti) was studied. The densification of titanium with 200 mesh and 400 mesh pass powder was achieved by SPS at $750{\sim}1100^{\circ}C$ under 10 MPa pressure and the flowing $H_2$+Ar mixed gas atmosphere. The microstructure of Ti sintered up to $800^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated grains was shown in sintered bodies at $900^{\circ}C$ with the 400 mesh pass powder and the lamella grains microstructure had been developed by increasing sintering temperature. The Vickers hardness of 240~270 HV and biaxial strength of 320~340 MPa were found for the specimen prepared at $950^{\circ}C$.

Construction of Ortho-Phenylene-Bridged Cp/Amido Titanium Complexes and Their Ethylene/Apha-Olefin Copolymerizations

  • Cho, Dae-Joon;Wu, Chun-Ji;Lee, Bun-Yeoul
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.223-223
    • /
    • 2006
  • A Suzuki-coupling route is developed for preparation of ortho-phenylene-bridged Cp/amido complexes, one of which shows higher activity, higher 1-hexene incorporation, and higher molecular weight than the silylene-bridged standard CGC $[Me_{2}Si({\eta}^{5}-Me_{4}Cp)(N^{t}Bu)]TiCl_{2}$.

  • PDF

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications (치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성)

  • Jung, Jong-Hyun;Noh, Hyeong-Rok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

Grindability of Ti-10%Zr-X%Cr(X=0,1,3) Alloys for Dental Applications (치과용 Ti-10%Zr-X%Cr(X=0,1,3)합금의 연삭성)

  • Jung, Jong-Hyun;Shin, Jae-Woo
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Purpose: The grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys in order to develop Ti alloys for dental applications with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-10%Zr-X%Cr(X=0,1,3) alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at one of the four rotational speeds of the wheel (12000, 18000, 25000 or 30000rpm) by applying a force(100gf). Grindability was evaluated by measuring the amount of metal volume removed per minute(grinding rate) and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared the results with those of cp-Ti(commercially pure titanium) Results: It was observed that the grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys increased with an increase in the Cr concentration. More, they are higher than cp-Ti, particularly the Ti-10%Zr-3%Cr alloy exhibited the highest grindability at all rotational speeds except 12000rpm. There was significant difference in the grinding rate and grinding ratio between Ti-10%Zr-3%Cr alloy and cp-Ti at all rotational speeds(p<0.05). Conclusion: The Ti-10%Zr-3%Cr alloy exhibited better grindability at high rotational speeds, great potential for use as a dental machining alloy.

Influence of the Mold Temperature on the Castability of CP Ti (주형온도가 CP Ti의 주조성에 미치는 영향)

  • Jung, Jong-Hyun;Joo, Kyu-Ji;Go, Eun-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The purpose of this study was to evaluate the titanium castability with a spin type casting machine(TiCast, Super R, Selec, Osaka. Japan). We tested phosphate bonded investment "Rematitan$^{(R)}$Plus(Dentaurum, Inc., Pforzheim, Germany)"of mesh grid pattern and plate pattern. Four different mold temperatures(room temperature, 200$^{\circ}C$, 400$^{\circ}C$ and 600$^{\circ}C$) were prepared for the present study. In mesh grid pattern with spruing of $\varphi$0.88㎜ dimeter, when the mold temperature increased, high percentage of castability was gained. Mold temperature showed a highly significant(p<0.05) correlation on the castability, In plate pattern, the higher the mold temperature during casting, the greater the adhesive phenomenon between Ti surface and the investment.

  • PDF

Recent R&D status on friction stir welding of Ti and its alloys (티타늄과 그 합금의 마찰교반용접기술 현황)

  • Kang, Duck-Soo;Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.