• Title/Summary/Keyword: COX-1

Search Result 2,410, Processing Time 0.031 seconds

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin;Li, Hua;Kim, Jae-Yeon;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

New Anti-Inflammatory Formulation Containing Synurus deltoides Extract

  • Choi, Yong-Hwan;Son, Kun-Ho;Chang, Hyeun-Wook;Bae, Ki-Hwan;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.848-853
    • /
    • 2005
  • Synurus deltoides was previously found to possess significant anti-inflammatory activity especially against chronic inflammation, and strong analgesic activity in vivo. In this study, new anti-inflammatory formulation containing S. deltoides extract as a major ingredient was prepared and in vivo activity was evaluated. The plausible action mechanism was also investigated. The new formulation (SAG) contains 1 part of S. deltoides extract, 0.9 part of Angelica gigas extract and 0.9 part of glucosamine sulfate (w/w). SAG inhibited dose-dependently edematic response of arachidonic acid (AA)- and 12-O-tetradecanoyl 13-acetate (TPA)-induced ear edema in mice, which is an animal model of acute inflammation. SAG showed 44.1 % inhibition of AA-induced ear edema at an oral dose of 50 mg/kg. In an animal model of chronic inflammation, SAG clearly reduced the edematic response of 7 -day model of multiple treatment of TPA (38.1 % inhibition at 200 mg/kg/day). Furthermore, SAG (50-800 mg/kg/day) as well as S. deltoides extract (285 mg/kg/day) significantly inhibited prostaglandin $E_2$ production from the skin lesion of the animals of 7-day model. These results were well correlated with in vitro finding that SAG as well as S. deltoides extract reduced cyclooxygenase (COX)-1- and COX-2-induced prostanoid production, measured in mouse bone marrow-derived mast cells. Therefore, these results suggest that SAG possesses anti-inflammatory activity in vivo against acute as well as chronic inflammatory animal models at least in part by inhibition of prostaglandin production through COX-1/COX-2 inhibition. And COX inhibition of SAG is possibly contributed by S. deltoides extract among the ingredients. Although the anti-inflammatory potencies of SAG were less than those of currently used anti-inflammatory drugs, this formulation may have beneficial effect on inflammatory disorders as a neutraceutical.

Surgical Outcomes of Cox-maze IV Procedure Using Bipolar Irrigated Radiofrequency Ablation and Cryothermy in Valvular Heart Disease

  • Kim, Jun-Sung;Lee, Jae-Hang;Chang, Hyoung-Woo;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • v.44 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • Background: We evaluated the efficacy of Cox-maze IV procedure using bipolar irrigated radiofrequency ablation and cryothermy in chronic atrial fibrillation associated with valvular heart disease. Material and Methods: From November 2005 to June 2009, ninety four patients have undergone valvular heart surgery with Cox-maze IV procedure. Preoperative duration of atrial fibrillation was $7.6{\pm}6.5$ years and follow-up duration was $22.7{\pm}12.3$ months. Results: There were two (2.1%) postoperative deaths not related to maze procedure. Two cerebrovascular accidents, five low cardiac output syndromes and two permanent pacemaker implantations have occurred after surgery. Preoperative ejection fraction on echocardiography was $55.3{\pm}8.1%$ and ejection fraction of postoperative six month was $54.7{\pm}6.5%$. Left atrial size of preoperative and postoperative were $61.5{\pm}11.6\;mm$ and $53.1{\pm}8.4\;mm$ at each. Freedom from atrial fibrillation rate at postoperative six-month was 80.7% and the cases of recurrence of atrial fibrillation after six months were three (3.3%). Risk factors for failure or recurrence of maze procedure were old age (p=.010) and preoperative moderate or severe tricuspid regurgitation (p=.033). Conclusion: The Cox-maze IV procedure using RFBP2 and cryothermy is quite safe and freedom from atrial fibrillation at postoperative 6 month was 82.5%. Risk factors for failure or recurrence of atrial fibrillation after Cox-maze IV were old age and preoperative over moderate tricuspid regurgitation.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Changes in the Expression Pattern of Cyclooxygenase-2, Mapkinases and Related Apoptotic Markers by Different Levels of Estrogen Supplementation in Mature or Ovariectomized Female Rat Heart (에스트로겐에 의한 암쥐의 심장조직의 COX-2, Mapkinases 및 관련된 Apoptotic Markers의 발현의 변화에 관한 연구)

  • Shin Jang In;Park Ock Jin
    • Journal of Nutrition and Health
    • /
    • v.38 no.1
    • /
    • pp.30-39
    • /
    • 2005
  • The effects of different concentrations of estrogen supplementation to mature female rats or estrogen supplementation to ovariectomized rats on cyclooxygenase-2 (COX-2) expression, PGE$_2$ production and mapkinases expression were investigated in experimentally induced atherogenic rats with feeding a high fat. high cholesterol diet. In the first experiment using 48-week old mature rats, the supplementation of three different levels of estrogen was compared to the basal diet. The high concentration of estrogen supplementation induced the marked up-regulation of COX-2 protein and the increase in plasma PGE$_2$ production and this seems to be followed by the up-regulation of p38 among mapkinases. The regulation of bax showed in a reverse trend of COX-2 in heart tissues of mature female rats. In the second ex-perimental system, female Sprague-Dawley rats were bilaterally ovariectomized; sham-operated animals were used as controls. Three weeks later, the animals were supplied with basal diet to sham-operated control group and ovariectomized control group, and estrogen supplemented diet to ovariectomized group for an eight-week experimental period. In a group supplemented with a medium dose of estrogen, COX-2 expression was up-regulated. This up-regulation was accompanied by the elevated expression of pERK1/2. Bax was increased in estrogen-fed animals indicating bax might be involved in estrogen feeding state in ovariectomized rats. Further investigations on the relationship between COX-2 and biological activities such as vasodilation by estrogen are required in in vivo system of female rats at the various physiological states.

Synthesis and Antiinflammatory Effects of a New Tricyclic Diterpene and Its Analogues as Potent COX-2 Inhibitors

  • Suh, Young-Ger;Kim, Young-Ho;Park, Hyoung-Sup;Lee, Hye-Kyung;Park, Young-Hoon;Kim, Ji-Young;Min, Kyung-Hoon;Shin, Dong-Yun;Jun, Ra-Ok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.10-14
    • /
    • 2000
  • The cycloooxygenase enzymes catalyze the oxidative conversion of arachidonic acid into prostag1andin H$_2$Which mediates both benificial and pathological effects. The COX-1 is constitutively expressed in most tissues and in blood platelets wherease the expression of COX-2 isoform is induced in response to inflmmatory stimuli such as cyctokynes. Thus the identification of a novel COX-2 selective inhibitor should offer excellent antiinflammatory activity with minimal side effects such as gastrointestinal toxicity. Recently, a group of structurally unique and biologically active pimarane diterpenoids has been isolated from indigenous Korean medicinal plants. These new diterpenoids turned out to be potential analgesic and antiinflammatory agent due to their potent inhibitory activities of prostaglandin synthesis. We have also found that the inhibition of PGE$_2$synthesis is attributed to the potent COX inhibition by pimarane diterpenoid in arachidonic acid cascade. In conjunction with development of new analgesic and nonsteroidal antiinflammatory agent, a series of works on these diterpenoids have been extensively carried out in our laboratories. These efforts involve the structure-activity relationship of pimaradienoic acid, molecular modelings and COX inibitory activities as well as actiinflammatory effects of its structural analogues. In addition, the total syntheses of the new natural pimarane diterpenoids, their stereoisomers and other structural variants were intensively investigated.

  • PDF

Roles of Opioid Receptor Subtype in the Spinal Antinociception of Selective Cyclooxygenase 2 Inhibitor

  • Choi, Cheol-Hun;Kim, Woong-Mo;Lee, Hyung-Gon;Jeong, Cheol-Won;Kim, Chang-Mo;Lee, Seong-Heon;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • v.23 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • Background: Selective inhibitors of cycloosygenase (COX)-2 are commonly used analgesics in various pain conditions. Although their actions are largely thought to be mediated by the blockade of prostaglandin (PG) biosynthesis, evidences suggesting endogenous opioid peptide link in spinal antinociception of COX inhibitor have been reported. We investigated the roles of opioid receptor subtypes in the spinal antionociception of selective COX-2 inhibitor. Methods: To examine the antionociception of a selective COX-2 inhibitor, DUP-697 was delivered through an intrathecal catheter, 10 minutes before the formalin test in male Sprague-Dawley rats. Then, the effect of intrathecal pretreatment with CTOP, naltrindole and GNTI, which are ${\mu}$, $\delta$, and k opioid receptor antagonist, respectively, on the analgesia induced by DUP-697 was assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2 Naltrindole and GNTI attenuated the antinociceptive effect of intrathecal DUP-697 during both phases of the formalin test, CTOP reversed the antinociception of DUP-697 during phase 2, but not during phase 1, Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. The $\delta$ and $\kappa$ opioid receptors are involved in the activity of COX-2 inhibitor on the facilitated state as well as acute pain at the spinal level, whereas the ${\mu}$ opioid receptor is related only to facilitated pain.

Roles of Serotonergic and Adrenergic Receptors in the Antinociception of Selective Cyclooxygenase-2 Inhibitor in the Rat Spinal Cord

  • Jeong, Hye-Jin;Lee, Seong-Heon;Cho, Soo-Young;Lee, Cha-Sup;Jeong, Cheol-Won;Yoon, Myung-Ha;Kim, Woong-Mo
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.179-184
    • /
    • 2011
  • Background: The analgesic mechanisms of cyclooxygenase (COX)-2 inhibitors have been explained mainly on the basis of the inhibition of prostaglandin biosynthesis. However, several lines of evidence suggest that their analgesic effects are mediated through serotonergic or adrenergic transmissions. We investigated the roles of these neurotransmitters in the antinociception of a selective COX-2 inhibitor at the spinal level. Methods: DUP-697, a selective COX-2 inhibitor, was delivered through an intrathecal catheter to male Sprague-Dawley rats to examine its effect on the flinching responses evoked by formalin injection into the hindpaw. Subsequently, the effects of intrathecal pretreatment with dihydroergocristine, prazosin, and yohimbine, which are serotonergic, ${\alpha}1$ adrenergic and ${\alpha}2$ adrenergic receptor antagonists, respectively, on the analgesia induced by DUP-697 were assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2. But, intrathecal dihydroergocristine, prazosin, and yohimbine had little effect on the antinociception of intrathecal DUP-697 during both phases of the formalin test. Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. Either the serotonergic or adrenergic transmissions might not be involved in the analgesic activity of COX-2 inhibitors at the spinal level.

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

Comparison of survival prediction models for pancreatic cancer: Cox model versus machine learning models

  • Kim, Hyunsuk;Park, Taesung;Jang, Jinyoung;Lee, Seungyeoun
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.23.1-23.9
    • /
    • 2022
  • A survival prediction model has recently been developed to evaluate the prognosis of resected nonmetastatic pancreatic ductal adenocarcinoma based on a Cox model using two nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP). In this study, we applied two machine learning methods-random survival forests (RSF) and support vector machines (SVM)-for survival analysis and compared their prediction performance using the SEER and KOTUS-BP datasets. Three schemes were used for model development and evaluation. First, we utilized data from SEER for model development and used data from KOTUS-BP for external evaluation. Second, these two datasets were swapped by taking data from KOTUS-BP for model development and data from SEER for external evaluation. Finally, we mixed these two datasets half and half and utilized the mixed datasets for model development and validation. We used 9,624 patients from SEER and 3,281 patients from KOTUS-BP to construct a prediction model with seven covariates: age, sex, histologic differentiation, adjuvant treatment, resection margin status, and the American Joint Committee on Cancer 8th edition T-stage and N-stage. Comparing the three schemes, the performance of the Cox model, RSF, and SVM was better when using the mixed datasets than when using the unmixed datasets. When using the mixed datasets, the C-index, 1-year, 2-year, and 3-year time-dependent areas under the curve for the Cox model were 0.644, 0.698, 0.680, and 0.687, respectively. The Cox model performed slightly better than RSF and SVM.