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Introduction 

Pancreatic cancer is well-known as one of the most lethal cancers worldwide because it 
has a 5-year overall survival rate of 12.6% as of 2020, while other cancers have 5-year 
overall survival rates of over 80%. The survival rate strongly depends on the stage of can-
cer and disease severity. For example, in patients with stage I pancreatic cancer, the 5-year 
postoperative survival rate is 70.32%, while in patients with stage IV cancer, the 5-year 
postoperative survival rate is only 3.52%. Therefore, early diagnosis and prediction have 
been considered promising ways to improve the survival rate of pancreatic cancer. 

A survival prediction model for resected pancreatic ductal adenocarcinoma (PDAC) 
was recently developed with data from the Surveillance, Epidemiology and End Results 
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A survival prediction model has recently been developed to evaluate the prognosis of re-
sected nonmetastatic pancreatic ductal adenocarcinoma based on a Cox model using two 
nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor 
Registry System-Biliary Pancreas (KOTUS-BP). In this study, we applied two machine learn-
ing methods—random survival forests (RSF) and support vector machines (SVM)—for sur-
vival analysis and compared their prediction performance using the SEER and KOTUS-BP 
datasets. Three schemes were used for model development and evaluation. First, we uti-
lized data from SEER for model development and used data from KOTUS-BP for external 
evaluation. Second, these two datasets were swapped by taking data from KOTUS-BP for 
model development and data from SEER for external evaluation. Finally, we mixed these 
two datasets half and half and utilized the mixed datasets for model development and val-
idation. We used 9,624 patients from SEER and 3,281 patients from KOTUS-BP to construct 
a prediction model with seven covariates: age, sex, histologic differentiation, adjuvant 
treatment, resection margin status, and the American Joint Committee on Cancer 8th edi-
tion T-stage and N-stage. Comparing the three schemes, the performance of the Cox mod-
el, RSF, and SVM was better when using the mixed datasets than when using the unmixed 
datasets. When using the mixed datasets, the C-index, 1-year, 2-year, and 3-year time-de-
pendent areas under the curve for the Cox model were 0.644, 0.698, 0.680, and 0.687, re-
spectively. The Cox model performed slightly better than RSF and SVM. 
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(SEER) database from the United States and external validation 
using the nationwide Korea Tumor Registry System-Biliary Pan-
creas (KOTUS-BP) dataset [1]. This prediction model uses a Cox 
model, which assumes linear associations with many clinicopatho-
logic features. However, it is necessary to investigate nonlinear re-
lationships or complex interactions between clinicopathologic fea-
tures associated with the survival time. To this end, we applied two 
machine learning (ML) methods—random survival forests (RSF) 
and support vector machines (SVM)—to construct predictive 
models for survival analysis. 

In this study, three different schemes were conducted for model 
development and external evaluation. First, we utilized data from 
SEER for model development and data from KOTUS-BP for ex-
ternal evaluation. Secondly, these two datasets were used in reverse 
by taking data from KOTUS-BP for model development and data 
from SEER for external evaluation. Finally, we mixed these two 
datasets half and half and utilized the mixed datasets for model de-
velopment and external validation. 

For each of the three different schemes, we developed predic-
tion models using a Cox proportional hazards model, RSF, and 
SVM. We compared their performance in terms of the C-index 
and 1-year, 2-year, and 3-year time-dependent areas under the 
curve (AUCs). 

Methods 

Data 
This study utilized two nationwide databases: the SEER database 
from the United States and the KOTUS-BP database from Korea. 
The datasets were pre-processed as described elsewhere [1]. In the 
screening process, 9,624 patients from SEER and 3,281 patients 
from KOTUS-BP were selected. Due to the different sets of co-
variates in the two datasets, only seven covariates—including age, 
sex, histologic differentiation, adjuvant treatment, resection mar-
gin status, and the American Joint Committee on Cancer (AJCC) 
8th edition T-stage and N-stage—were utilized in this study. 

The SEER database, which has been maintained by the National 
Cancer Institute in the United States since 1975, is one of the larg-
est and highest-quality cohort studies, whereas the KOTUS-BP 
database was launched by the Korean Association of Hepato-Bili-
ary-Pancreatic Surgery in 2014 and has been prospectively regis-
tered and regularly managed by pancreatobiliary surgeons at spe-
cialized centers in Korea. To unify the study period, patients who 
underwent upfront curative-intent pancreatectomy between 2004 
and 2016 were included. 

Model development scheme 
Three schemes for model development and external validation 
were conducted. First, we utilized data from SEER for model de-
velopment and data from KOTUS-BP for validation. Second, we 
swapped the roles of these two datasets for model development 
and evaluation. Finally, we mixed these two datasets half and half, 
and utilized the mixed datasets for model development and exter-
nal validation. 

The Cox proportional hazard (Cox-PH) model and the two ML 
models had different schemes for the model development process, 
as shown in Fig. 1, although we used all seven covariates in the 
Cox-PH model and both ML survival models. While the Cox-PH 
model was constructed without considering any hyperparameters, 
both RSF and SVM models require cross-validation (CV) to select 
the set of hyperparameters that build the best model. First, the 
model development dataset was divided into 10 subsets. For 10-
fold CV, nine of the 10 subsets were used for the training set and 
the other subset was used for the validation set. The average Har-
rell C-index of the validation sets in a total of 10 iterations was cal-
culated to compare the performance of models. The final model 
was then constructed with the entire model development dataset 
and the set of hyperparameters that resulted in the best average 
Harrell C-index during 10-fold CV. 

ML methods for survival analysis 
In prospective cohort studies, survival analysis has been useful to 
investigate the prognostic factors associated with the survival time 
and to predict disease processes. In traditional survival analysis, a 
survival prediction model has been constructed on the basis of de-
mographic and clinicopathologic information. In recent years, 
there has been considerable interest in applying ML methods to 
predict the survival of cancer patients using a considerable amount 
of genomic information including traditional clinical covariates. 
An advantage of ML methods over the classical Cox regression 
models is their ability to model complicated associations between 
the survival time and risk factors, leading to better prediction. Un-
like regression and classification settings, standard ML methods 
cannot be directly applied to censored survival data. With consid-
eration of the censoring mechanism, several ML methods have 
been extended to survival data, such as bagging survival trees [2], 
RSF [3,4], SVM for survival analysis [5-8], and CoxBoosting [9]. 
Among these methods, RSF and SVM for survival analysis were 
used to develop prediction models for PDAC patients in this 
study. 
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Random survival forests 
The RSF method is an extension of Breiman’s random forest 
method to right-censored survival data by using a forest of survival 
trees for prediction. Similar to regression and classification set-
tings, RSF is an ensemble learner formed by averaging a tree 
base-learner. In survival settings, a binary survival tree is the 
base-learner, and the ensemble learner is formed by averaging each 
tree’s Nelson-Aalen’s cumulative hazard function. 

There are four main steps in RSF: (1) Draw B bootstrap sam-
ples randomly from the given dataset. Since one-third of the train-
ing set data is not present in the bootstrapping sample, this leftover 
data is known as the out-of-bag (OOB) data. (2) For each sample, 
construct a survival tree using a randomly selected subset of vari-
ables among all available variables, and split the nodes using the 
candidate variables that maximize the survival difference between 
child nodes. Here, the survival difference is measured by three cri-
teria: the log-rank statistic, gradient-based Breier score, and log-
rank score. (3) Grow the tree to the full size with the constraint 
that a terminal node should contain a certain number of unique 
uncensored patients. (4) For each terminal node, calculate the cu-
mulative hazard function (CHF) based on the Nelson-Aalen esti-
mator and take the ensemble CHF of the OOB data by averaging 
the CHF of each tree. 

SVM for survival analysis 
The SVM method of supervised learning has been very successful, 
mostly in classification and then extended to the regression prob-
lem. The main idea of SVM is to minimize the ε-insensitive loss 
function, max (0,| f (xi)–yi |–ε), with a regularization parameter. 
Here, f (xi), yi, and ε are the predicted value, the actual value, and 
the acceptable margin of error, respectively. 

To take into account censored survival data, SVM for regression 
on the censored data (SVCR) has been proposed by imposing 
constraints on the SVM formulation for two comparable cases 
[5,6]. In other words, for censored data, the time to event after 
censoring is unknown and thus predictions greater than the cen-
soring time are not required to be penalized. However, all survival 
predictions less than the censoring time are penalized, while un-
censored data are treated in the same way as in the ordinary regres-
sion approach, since the exact event time is known. A prior study 
compared three types of SVM [8], including a regression ap-
proach, a ranking approach and a hybrid approach combining the 
regression and ranking approaches. All types of SVM share a com-
mon frame, but they differ in their objective function and con-
straints. In this paper, two types of SVM were considered: the 
SVCR model proposed by Shivaswamy et al. [5] and ranking sup-
port vector machines (RankSVMs) proposed by Van Belle et al. 

Fig. 1. Flowchart of model development and external validation process for the Cox, random survival forests, and support vector machines 
models. SEER, Surveillance, Epidemiology and End Results; Cox PH, Cox proportional hazard; KOTUS-BP, Korea Tumor Registry System-Biliary 
Pancreas; CV, cross-validation.

SEER Data 
(n=9,624)

SEER Data 
(n=9,624) 10-fold CV

Select the best hyperparameterCox PH model development

Model development using
the best hyperparameter

KOTUS-BP Data
(n=3,281)

KOTUS-BP Data
(n=3,281)

3 / 9https://doi.org/10.5808/gi.22036

Genomics & Informatics 2022;20(2):e23



[8]. These two models have been summarized in detail and com-
pared elsewhere [7]. 

In the SVM model, overall survival time, y, is explained by the 
clinical variables x as y=φ(x)+ϵ, where φ(∙) is called the feature 
map. Since the feature map usually implies a higher-dimensional 
space, it is unusual to calculate the feature map itself. Instead, the 
feature map is directly calculated by kernel k(xi, xj)=φ(xi)

T φ(xj) 
for variable x between patients i and j, which is a consequence of 
Mercer’s theorem [10]. The entire process of training the model 
and generating predictions is simply carried out by using the ker-
nel. The kernel plays a significant role in constructing SVM mod-
els, and various types of kernels are available, among which a linear 
kernel and a clinical kernel were considered. The linear kernel is 
given as k(xi, xj)=x i

Txj, whereas the clinical kernel proposed by 
Daemen and De Moor [11] is defined as the average of the kernel 
functions, k(xi,xj), of all variables between patients i and j. Here  

k (xi, xj) =           for continuous and ordinal clin-

ical variables and as k (xi, xj) =      for nominal clinical  

variables. The examples presented by Daemen and De Moor [11] 
show that this kernel better accounts for clinical data, which often 
have different scales in covariates, and the differences in values of 
nominal variables are not necessarily linear. The final kernel for 
clinical data is then the sum of the individual kernel matrices di-

vided by the total number of clinical variables. This final kernel de-
scribes the similarity of a class of patients based on a set of vari-
ables of different types. 

Although SVCR and RankSVMs share the same framework to a 
certain extent, they differ in terms of how they utilize information 
for their ultimate objective. SVCR is designed to directly predict 
the survival time and to minimize the absolute error between pre-
dicted and observed survival times. In contrast, RankSVMs focus-
es on predicting the correct ranking of survival times rather than 
predicting the actual survival time. In this respect, SVCR extends 
the standard support vector regression to censored data by penal-
izing incorrect predictions of censored observations [5,6], while 
RankSVMs takes into account the ranking problem for the cen-
sored data by minimizing the empirical risk of incorrectly ranking 
two observations. 

Survival prediction models 
All statistical analyses were done using R version 3.6.2 (The R 
Foundation for Statistical Computing, Vienna, Austria). The only 
continuous covariable, age, was reported as the mean ± standard  
deviation, and the other categorical variables were reported as fre-
quencies with percentages, as shown in Table 1. 

Two Kaplan-Meier survival curves were compared using the log-
rank test, as shown in Fig. 2. In addition, 5-year survival rates and 
median survival times were given. Variables with p-values less than 

Table 1. Basic statistics and 5-year overall survival rates for seven variables in the SEER and KOTUS-BP databases

Variable
SEER database (n=9,624) KOTUS database (n=3,281)

Patients 5-Year OS (%) p-valuea Patients 5-Year OS (%) p-valuea

Age (yr) 65.6±10.4 20.1 63.8±10.1 32.2
Female 4,755 (49.4) 21.3 1,381 (42.1) 36.2
Male 4,869 (50.6) 18.9 0.006 1,900 (57.9) 29.2 0.146
Head 8,079 (83.9) 19.2 2,046 (62.4) 28.5
Body/Tail 1,545 (16.1) 25.0 0.002 1,235 (37.6) 37.8 <0.001
No adjuvant treatment 2,948 (30.6) 17.3 2,006 (61.1) 29.5
Adjuvant treatment 6,676 (69.4) 21.3 <0.001 1,275 (38.9) 36.1 <0.001
Well differentiated 1,013 (10.5) 37.4 376 (11.5) 44.9
Moderately differentiated 5,055 (52.5) 20.5 <0.001 2,362 (72.0) 32.9 <0.001
Poorly differentiated 3,556 (37.0) 14.6 <0.001 543 (16.5) 20.8 <0.001
 T1 1,603 (16.7) 32.7 672 (20.5) 45.3
 T2 5,830 (60.6) 18.8 <0.001 2,007 (61.2) 29.7 <0.001
 T3 2,191 (22.7) 14.3 <0.001 602 (18.3) 24.5 <0.001
 N0 3,155 (32.8) 32.4 1,313 (40.0) 42.6
 N1 4,030 (41.9) 20.5 <0.001 1,347 (41.1) 28.5 <0.001
 N2 2,439 (25.3) 14.6 <0.001 621 (18.9) 16.4 <0.001

Values are presented as mean±SD or number (%).
SEER, Surveillance, Epidemiology and End Results; KOTUS-BP, Korea Tumor Registry System-Biliary Pancreas; OS, overall survival.
aLog-rank test.

(max–min)–｜xi–xj｜
max–min

1, ifxi = xj

0, ifxi ≠ xj
{
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0.05 in the univariate Cox model were entered into a multivariate 
Cox proportional hazards model to estimate the hazard ratios 
(HRs) for the corresponding predictors, as shown in Fig. 3. 

For the implementation of RSF, the number of binary decision 
trees, the maximum variables for splitting in each node, and the split-
ting rules for measuring survival differences are shown in Table 2. 

The number of trees was 50, 100, 200, 500, and 1,000, and the 
variables for splitting were given as 10. Although there were seven 
variables, three variables (histologic differentiation, AJCC 8th edi-
tion T-stage, and N-stage) had one more additional variable after 
one-hot encoding. Three different split rules were applied: log-rank 
splitting [12,13], gradient-based Brier score splitting [14], and log-
rank score splitting [15]. As a result, 150 models for each dataset 
were constructed, consisting of a combination of the number of 
trees, the number of variables for splitting, and the split rules. 

To implement SVM, 80 models were considered from combina-
tions of various hyperparameters: two SVM models (SVCR and 
RankSVMs), two types of kernels (linear and clinical kernels), two 
ways of computing distance between data points (makediff1 and 
makediff3), and 10 values of the regularization parameter γ as 
shown in Table 3. The two arguments makediff1 and makediff3 
are used in the R package survivalsvm, in which makediff1 com-
putes the distance between two consecutive observations only 
when the first one is not censored, whereas makediff3 computes 
the difference between data point i and its neighbor that has the 
largest survival time that is smaller than the survival time of yi [8]. 

In total, 80 models were cross-validated and the model with the 
best validation C-index was chosen.  

Advantages of ML methods over the Cox model  
Based on three survival predictive models, we investigated person-
alized treatment policies using the survival rate over time. It is well 
known that the Cox model assumes a proportional HR over time, 
which implies that the HRs between different individuals are con-
stant over time. However, the two ML models used in this study re-
flect more complex interactions between covariates and yield 
non-constant HRs between different individuals over time. For 
personalized treatment, it would be more desirable to predict the 
survival rate over time using the ML models than using the Cox 
model. 

Results 

Fig. 2 shows the two Kaplan-Meier survival curves for the SEER 
and KOTUS-BP datasets. The censoring fractions were 30.7% for 
SEER and 49.5% for KOTUS-BP. These two survival curves over-
lapped for up to 20 months and then significantly separated, with a 
p-value less than 1e-13 from the log-rank test for the equivalence 
of two survival curves. The median survival times were 21 months 
for SEER and 24 months for KOTUS-BP. Fig. 3 shows the estimat-
ed HRs of each clinical variable from the multivariate Cox model 
with 95% confidence intervals and p-values for both datasets. The 

Fig. 2. Kaplan-Meier survival curves with 5-year overall survival (OS) rates and median survival times for the Surveillance, Epidemiology and 
End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP) datasets.
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Fig. 3. Hazard ratios and 95% confidence intervals of seven variables in the Surveillance, Epidemiology and End Results (SEER) and Korea 
Tumor Registry System-Biliary Pancreas (KOTUS-BP) datasets. AJCC, American Joint Committee on Cancer.
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estimated HRs of the seven variables were not meaningfully differ-
ent between the datasets, and all the variables were significant, ex-
cept for sex in KOTUS-BP dataset. 

Table 4 shows the C-index values and 1-year, 2-year, and 3-year 
time-dependent AUCs for the final Cox, RSF, and SVM survival 
analysis models according to the three schemes of model develop-
ment. The Cox, RSF, and SVM models performed somewhat bet-
ter when the two datasets were mixed half and half than when the 
first and second schemes were applied. Although the results are 
not shown here, the performance of RankSVMs was exceptionally 
low, with C-index values of 0.548, 0.529, and 0.514 for the three 
schemes, respectively. This implies that the rank-based approach 
performed worse than the regression-based approach in this study. 

Through 10-fold CV of 150 RSF models, the model with the 
best validation Harrell C-index was chosen as the final RSF model. 
The final RSF model consisted of 100 decision trees, used a maxi-
mum of two variables in splitting nodes, and used the log-rank test 
to measure survival differences when two datasets were mixed half 
and half. The C-index and 1-year, 2-year, and 3-year time-depen-

dent AUCs were 0.6337, 0.6824, 0.6681, and 0.6781, respectively. 
Similarly, the model with the best validation Harrell C-index 

was chosen through 10-fold CV of 80 SVM models. The final 
SVM model was the SVCR model based on an additive clinical 
kernel, regularization constant (γ) of 0.1, and the makediff3 meth-
od to calculate the distance between data points when the two 
datasets were mixed half and half. The C-index and 1-year, 2-year 
and 3-year time-dependent AUCs were 0.6233, 0.6849, 0.6352, 
and 0.6264, respectively. 

The C-index and 1-year, 2-year, and 3-year time-dependent 
AUCs of the Cox model were 0.6434, 0.6976, 0.6795 and 0.6873, 
respectively. Comparing these values to those of the two ML sur-
vival models, the Cox model consistently performed slightly better 
than RSF and SVM models. The Cox model also yielded slightly 
better results when the two datasets were mixed half and half than 
when the two datasets were not mixed. 

In order to consider personalized treatment policies, we com-
pared the predictive survival curves of three different patients us-
ing the fitted Cox model and the final RSF model described above. 

Table 4. C-index and 1-year, 2-year, 3-year time-dependent AUCs for the Cox, RSF, and SVM models according to three schemes

Model
Training Test

C-index Td1 AUC Td2 AUC Td3 AUC C-index Td1 AUC Td2 AUC Td3 AUC
Training (SEER) Test (KOTUS)
 Cox 0.65417 0.72545 0.68776 0.68765  0.62792 0.65489 0.66759 0.68153
 RSF 0.66520 0.72960 0.70807 0.71722  0.63344 0.66660 0.67675 0.69104
 SVM 0.64218 0.72258 0.65812 0.64074  0.59956 0.61514 0.62619 0.63458
Training (KOTUS) Test (SEER)
 Cox 0.65074 0.69346 0.69524 0.70095  0.62932 0.68365 0.67008 0.67426
 RSF 0.66293 0.70624 0.71295 0.71676  0.62189 0.67445 0.65885 0.66058
 SVM 0.62668 0.66973 0.66769 0.66072  0.60061 0.64794 0.63057 0.62372
Training (SEER + KOTUS) Test (SEER + KOTUS)
 Cox 0.64890 0.70718 0.69108 0.69327  0.64361 0.69764 0.67953 0.68726
 RSF 0.66396 0.71328 0.72110 0.73110  0.63363 0.68239 0.66810 0.67806
 SVM 0.62538 0.69700 0.64029 0.61994  0.62333 0.68489 0.63515 0.62643

AUC, area under receiver operating characteristic curve; RSF, random survival forests; SVM, support vector machines; C-index, Harrell’s concordance index; 
Td1, 1-year time-dependent; Td2, 2-year time-dependent; Td3, 3-year time-dependent; KoTUS, Korea Tumor Registry System-Biliary Pancreas; SEER, 
Surveillance, Epidemiology and End Results.

Table 2. Hyperparameters for random survival forests

Hyperparameter Value
No. of trees 50, 100, 200, 500, 1,000
Max. variables used in split 1–10
Splitting rule log-rank/bs.gradient/logrankscore

One-hot encoded variables: differentiation, AJCC 8th edition T and N 
staging.
AJCC, American Joint Committee on Cancer.

Table 3. Hyperparameters for support vector machines for survival 
analysis

Hyperparameter Value
SVM type SVRC, RankSVMs
Kernel Linear, clinical
Distance matrix Makediff1, makediff3
Regularization constant 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10

SVM, support vector machines; SVRC, support vector regression for 
censored data.
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Suppose that the three chosen patients (A, B, and C) are all 
50-year-old women, have a tumor in the body or tail of the pancre-
as, and have not received chemotherapy. Patient A has a well differ-
entiated tumor staged T1 and N0 according to the AJCC 8th edi-
tion staging system. Patient B has a moderately differentiated tu-
mor staged T2 and N1, whereas patient C has a poorly differenti-
ated tumor staged T3 and N2. We plotted two predicted survival 
curves from both the Cox model and RSF model for these three 
patients over time, as shown in Fig. 4. The predicted survival 
curves from the Cox model showed relatively consistent differenc-
es among these three patients over time, whereas those from the 
RSF model showed less consistent differences. For example, the 
slope of the survival curve of patient C suddenly changed at 10 
months after the diagnosis and the slope of patient B dramatically 
changed at 17 months after the diagnosis, whereas the slope of pa-
tient A did not change over time. Therefore, it seems that there is a 
discrepancy between the survival curves generated using the Cox 
and RSF models. This may imply that different treatment strate-
gies for different patients would maximize treatment efficacy. 

Discussion 

In light of the development of a predictive survival model for 
PDAC [1], we considered a comparative study to investigate 
whether ML methods for survival analysis improve the predictabil-
ity of the survival rate. In this study, both RSF and SVM methods 
for survival analysis were considered and compared with the Cox 
model [1] using the same SEER and KOTUS-BP datasets. In ad-
dition to the scheme used in the previous model [1], two other 
schemes were considered for model development and evaluation. 
In the second scheme, the roles of these two datasets were re-
versed, so that KOTUS-BP was used as the training set and SEER 
was used as the external validation set. In the third scheme, these 
two datasets were mixed half and half, and one of the mixed data-
sets was randomly chosen for model development and the remain-
ing dataset was used for external validation. As shown in the Re-
sults section, the third scheme yielded slightly better performance 
for all methods than the other two schemes. 

Compared with the Cox model, the performance of the ML sur-
vival models was not significantly improved, and RSF performed 
similarly to the Cox model. However, the performance of SVM 
differed substantially according to how the survival information 
was used. The performance of SVCR was comparable to those of 
the Cox model and RSF, since SVCR utilizes the survival time in 
the regression model considering the censoring mechanism. In 
contrast, the performance of RankSVMs was not good because 

this method only uses the ranking information of the survival 
times. 

The RSF and SVM showed no substantial improvements in per-
formance compared to the Cox model. In this study, only seven 
clinical variables were shared between the SEER and KOTUS-BP 
datasets, which might have been too few to maximize the useful-
ness of ML methods. ML methods are useful to analyze more 
complex and nonlinear associations among high-dimensional vari-
ables such as genetic information. It was also noted that the Harrell 
C-index of all models, both in the training set and in the test set, 
was less than 0.70, except for one or two cases. 

Although it takes more time to develop ML survival models 
than a Cox model and there is no substantial performance im-
provement, these ML survival models have the advantage of allow-
ing nonlinear risk to be predicted over time. As shown in Fig. 4, 
the trend in the survival curves for the RSF model was different 
from that for the Cox model. For example, the survival curves of 
the RSF model had the largest difference between patients B and 
C when 1 year to 2 years had passed. With this information, clini-
cians can pay particular attention to patient C in this period. Mean-
while, patients in a period with particularly high risk can be in-
formed in advance, so that they could receive additional health 
care in that period. The fact that the RSF model outputs the sur-

Fig. 4. Overlaid predicted survival curves of the Cox model and 
random survival forests (RSF) method for three patients. Cox PH, 
Cox proportional hazard.
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vival curve of each individual might enable more patient-specific 
care. Furthermore, ML survival models recommend whether a pa-
tient should receive treatment or not [16]. Adjuvant chemothera-
py was found to be helpful for almost all of the patients in this 
study, but other treatments can be rather harmful to some patients. 
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