Acknowledgement
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C2037).
References
- Kang JS, Mok L, Heo JS, Han IW, Shin SH, Yoon YS, et al. Development and external validation of survival prediction model for pancreatic cancer using two nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP). Gut Liver 2021;15:912-921. https://doi.org/10.5009/gnl20306
- Hothorn T, Lausen B, Benner A, Radespiel-Troger M. Bagging survival trees. Stat Med 2004;23:77-91. https://doi.org/10.1002/sim.1593
- Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat 2008;2:841-860.
- Ishwaran H, Kogalur UB, Chen X, Minn AJ. Random survival forests for high-dimensional data. Stat Anal Data Mining ASA Data Sci J 2011;4:115-132. https://doi.org/10.1002/sam.10103
- Shivaswamy PK, Chu W, Jansche M. A support vector approach to censored targets. In: 7th IEEE International Conference on Data Mining (ICDM 2007), 2007 Oct 28-31, Omaha, NE, USA. New York: Institute of Electrical and Electronics Engineers, 2008. pp. 655-660.
- Khan FM, Zubek VB. Support vector regression for censored data (SVRc): a novel tool for survival analysis. In: 8th IEEE International Conference on Data Mining, 2008 Dec 15-19, Pisa, Italy. New York: Institute of Electrical and Electronics Engineers, 2009. pp. 863-868.
- Van Belle V, Pelckmans K, Suykens JA, Van Huffel S. Support vector machines for survival analysis. In: Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2007), 2007 Jul 25-27, Plymouth, UK. pp. 1-8.
- Van Belle V, Pelckmans K, Van Huffel S, Suykens JA. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med 2011;53:107-118. https://doi.org/10.1016/j.artmed.2011.06.006
- De Bin R. Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost. Technical report number 180. Munchen: University of Munich, 2015.
- Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers (Smola A, Bertlett P, Scholkopf B, Schuurmans D, eds.). Cambridge: MIT Press, 2000. pp. 115-132.
- Daemen A, De Moor B. Development of a kernel function for clinical data. Annu Int Conf IEEE Eng Med Biol Soc 2009;2009: 5913-5917.
- Segal MR. Regression trees for censored data. Biometrics 1988;44:35-47. https://doi.org/10.2307/2531894
- LeBlanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc 1993;88:457-467. https://doi.org/10.1080/01621459.1993.10476296
- Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Rev 1950;78:1-3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
- Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comp Stat Data Anal 2003;43:121-137. https://doi.org/10.1016/S0167-9473(02)00225-6
- Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 2018;18:24. https://doi.org/10.1186/s12874-018-0482-1