Comparison of survival prediction models for pancreatic cancer: Cox model versus machine learning models |
Kim, Hyunsuk
(Department of Statistics, University of California)
Park, Taesung (Department of Statistics, Seoul National University) Jang, Jinyoung (Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine) Lee, Seungyeoun (Department of Mathematics and Statistics, Sejong University) |
1 | Hothorn T, Lausen B, Benner A, Radespiel-Troger M. Bagging survival trees. Stat Med 2004;23:77-91. DOI |
2 | Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat 2008;2:841-860. |
3 | Shivaswamy PK, Chu W, Jansche M. A support vector approach to censored targets. In: 7th IEEE International Conference on Data Mining (ICDM 2007), 2007 Oct 28-31, Omaha, NE, USA. New York: Institute of Electrical and Electronics Engineers, 2008. pp. 655-660. |
4 | Khan FM, Zubek VB. Support vector regression for censored data (SVRc): a novel tool for survival analysis. In: 8th IEEE International Conference on Data Mining, 2008 Dec 15-19, Pisa, Italy. New York: Institute of Electrical and Electronics Engineers, 2009. pp. 863-868. |
5 | Van Belle V, Pelckmans K, Van Huffel S, Suykens JA. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med 2011;53:107-118. DOI |
6 | De Bin R. Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost. Technical report number 180. Munchen: University of Munich, 2015. |
7 | Daemen A, De Moor B. Development of a kernel function for clinical data. Annu Int Conf IEEE Eng Med Biol Soc 2009;2009: 5913-5917. |
8 | Segal MR. Regression trees for censored data. Biometrics 1988;44:35-47. DOI |
9 | LeBlanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc 1993;88:457-467. DOI |
10 | Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Rev 1950;78:1-3. DOI |
11 | Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comp Stat Data Anal 2003;43:121-137. DOI |
12 | Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 2018;18:24. DOI |
13 | Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers (Smola A, Bertlett P, Scholkopf B, Schuurmans D, eds.). Cambridge: MIT Press, 2000. pp. 115-132. |
14 | Kang JS, Mok L, Heo JS, Han IW, Shin SH, Yoon YS, et al. Development and external validation of survival prediction model for pancreatic cancer using two nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP). Gut Liver 2021;15:912-921. DOI |
15 | Ishwaran H, Kogalur UB, Chen X, Minn AJ. Random survival forests for high-dimensional data. Stat Anal Data Mining ASA Data Sci J 2011;4:115-132. DOI |
16 | Van Belle V, Pelckmans K, Suykens JA, Van Huffel S. Support vector machines for survival analysis. In: Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2007), 2007 Jul 25-27, Plymouth, UK. pp. 1-8. |