• Title/Summary/Keyword: COV(Coefficient of Variation)

Search Result 92, Processing Time 0.028 seconds

Feasibility study of improved median filtering in PET/MR fusion images with parallel imaging using generalized autocalibrating partially parallel acquisition

  • Chanrok Park;Jae-Young Kim;Chang-Hyeon An;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.222-228
    • /
    • 2023
  • This study aimed to analyze the applicability of the improved median filter in positron emission tomography (PET)/magnetic resonance (MR) fusion images based on parallel imaging using generalized autocalibrating partially parallel acquisition (GRAPPA). In this study, a PET/MR fusion imaging system based on a 3.0T magnetic field and 18F radioisotope were used. An improved median filter that can set a mask of the median value more efficiently than before was modeled and applied to the acquired image. As quantitative evaluation parameters of the noise level, the contrast to noise ratio (CNR) and coefficient of variation (COV) were calculated. Additionally, no-reference-based evaluation parameters were used to analyze the overall image quality. We confirmed that the CNR and COV values of the PET/MR fusion images to which the improved median filter was applied improved by approximately 3.32 and 2.19 times on average, respectively, compared to the noisy image. In addition, the no-reference-based evaluation results showed a similar trend for the noise-level results. In conclusion, we demonstrated that it can be supplemented by using an improved median filter, which suggests the problem of image quality degradation of PET/MR fusion images that shortens scan time using GRAPPA.

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

하중 방향(압축-인발)과 말뚝 직경이 말뚝의 지지력에 미치는 영향에 관한 연구 -실내모형시험- (The Effect of Load Direction and Pile Size on the Pile Bearing Capacity : Model Pile Tests)

  • 이인모;백세환
    • 한국지반공학회지:지반
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 1992
  • Model pile tests using calibration chamber are performed in !his paper in order to clarify the effect of the fundamental differences between the newly developed SPLT(Simple Pile Loading Test)and the conventional pile loading test on the pile bearing capacity. They are : (1) the direction of the applied load to mobilize the skin friction ; and (2) the use of reduced sifted sliding core. The conclusions obtained from the model pile tests are as follows : (1) The skin friction in tension loading is found to be somewhat smaller than that in compression loading. The average ration is 0.73 with the coefficient of variation (COV) of 0.18. (2) The ratio of the tip resistance rosin연 the reduced sized sliding core to that using the whole shoe shows wide scattering ; its average is 0.99 and the COV is 0.28. The aver - age of 0.99 means that there is no considerable difference in the tip resistance whether the reduced sized sliding core or the whole shoe is used, on condition that penetration depth ratio is larger than 4 : if the boundary effect of the chamber test is considered, the resistance of the whole shoe might be even larger.

  • PDF

SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구 (The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner)

  • 이민규;박찬록
    • 핵의학기술
    • /
    • 제28권1호
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

연약지반의 불확실성을 고려한 연직배수공법의 신뢰성 설계 (Reliability-Based Design of Vertical Drain Method Considering Uncertainties in Geotechnical Property)

  • 김병일;사상호;김방식;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1148-1154
    • /
    • 2006
  • Composite discharge capacity tests and smear effect tests are carried out to estimate the parameters for the reliability-based design of vertical drain method. Also the probabilistic and deterministic solutions of radial consolidation theory are presented. It compared to the result of reliability-based design and that of deterministic design using the tested and estimated parameters. The results indicated that the drain spacing is larger the deterministic method than the probabilistic method because the former is not considered the uncertainties in the properties of soil. The divergence of methods is dependent on the probability of achieving target degree of consolidation by a given time and the coefficient of variation(COV) of the coefficient of horizontal consolidation$(c_h)$.

  • PDF

가솔린 기관의 혼합기 형성 촉진이 연소 특성에 미치는 영향 (Effect of Enhanced Mixture Formation on the Combustion Characteristics in Gasoline Engine)

  • 이창식;서영호;김민수
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.56-63
    • /
    • 1995
  • In this paper, the fuel atomization effect of a spark-ignition engine on the lean burn characteristics is studied. The fuel atomization is enhanced by heating the inside of the intake manifold with electric heater. Several operating parameters including cyclic variation are expressed against the air-fuel ratio from the experimental results. The fuel atomization gives much influence on the combustion stability. As the intake manifold is heated, the combustion duration decreased and the value of COV in the lean region as well as in the theoretical equivalence ratio became smaller than of not-heated.

  • PDF

혼합모형을 이용한 도로유형분류에 관한 연구 (A Study on the Classification of Road Type by Mixture Model)

  • 임성한;허태영;김현석
    • 대한토목학회논문집
    • /
    • 제28권6D호
    • /
    • pp.759-766
    • /
    • 2008
  • 도로분류체계는 도로의 기능 및 설계기준을 정의하기 위한 기초가 된다. 현재 우리나라에서는 도로의 소재지역, 도로의 기능 등 다양한 기준에 따라 도로를 구분하고 있다. 본 연구에서는 다양한 교통지표를 이용하여 일반국도를 분류하고, 도로 유형별 교통 특성을 규명하고자 하였다. 이를 위해 상시교통량 조사지점을 대상으로 다양한 교통지표를 이용하여 혼합모형을 통해 일반국도를 유형별로 분류하고 교통특성을 분석하였다.적용된 변수는 총 8개로 AADT(연평균 일교통량), $K_{30}$(설계시간 계수), 중차량 비율, 주간 교통량 비율, 첨두율, 일요일 계수, 휴가철 계수, 그리고 COV(변동계수)이다. 요인분석 결과 2개의 요인 즉, 교통량 변동 특성 요인(COV, $K_{30}$, 휴가철계수, 주간 교통량 비율, 일요일계수, 첨두율, AADT)과 중차량 및 방향별 특성 요인(중차량 비율, $D_{30}$)이 추출되었다. 306개 상시지점이 3개의 그룹으로 구분되며, 이에 대한 교통특성을 분석한 결과 그룹 I은 도시부도로, 그룹 II는 지방부도로, 그룹 III은 관광부도로로 판단된다. AADT는 도시부도로가 30,000대, 지방부도로가 16,000대, 그리고 관광부도로가 5,000대 수준인 것으로 분석된다. 그룹 III은 일요일과 휴가철의 평균 일교통량이 연평균 일교통량보다 매우 많은 전형적인 관광 위락 도로임을 알 수 있다. 시간대별 교통량 분석결과 평일 교통량 패턴은 그룹 I이 비교적 오전 및 오후 첨두현상이 강하게 나타나며, 그룹 II와 그룹 III은 첨두현상이 거의 나타나지 않는 것으로 분석된다.

델파이 기법을 활용한 터널 붕괴 위험도 분석을 위한 영향인자 도출에 관한 연구 (A Study on Influence Factors for Tunnel Collapse Risk Analysis using Delphi Method)

  • 김정흠;김창용;이승수;이준환
    • 지질공학
    • /
    • 제27권2호
    • /
    • pp.165-172
    • /
    • 2017
  • 본 연구는 델파이 기법을 활용하여 최적화 단면 설계 도출 및 시공중 터널 붕괴위험도 평가를 위해 필요한 평가영향인자를 정립하는 것을 목표로 하였다. 평가영향인자 정립은 문헌조사, 선행연구 및 전문가 집단의 브레인스토밍과정을 통하여 총 5개의 상위분류체계를 구축하였다. 21명의 전문가 패널을 구성하여 총 1, 2, 3차의 델파이 조사 과정을 통해 전문가 판단과정에서의 오류 및 편향을 방지하여 신뢰성을 향상시켰다. 델파이 1차 조사에서는 개방형 설문조사를 통해서 각 전문가 패널의 의견을 수렴하여 총 22개의 평가영향인자 후보군을 도출하였다. 델파이 2차 조사에서는 수집된 총 22개의 평가영향인자 후보군을 대상으로 리커트 7점 척도를 기반으로 중요도 설문을 수행하였으며 타당성 검증을 위해 CVR (Content Validity Ration)분석을 수행하여 부적합한 후보군을 제외하였다. 마지막으로 3차 조사에서는 2차 조사에서 도출된 결과를 가지고 재조사를 수행하였으며, 최종적으로 전문가 답변에 대한 CVR 및 COV (Coefficient of Variation)분석을 수행하여 총 14개의 평가영향인자를 도출하였다.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.