• Title/Summary/Keyword: COP (Coefficient of performance)

Search Result 227, Processing Time 0.027 seconds

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Attachment of the Air Heat Exchanger for COP Improvement in the Heat Pump (열펌프 성능향상을 위한 공기 열교환기 부착효과)

  • 노정근;송현갑;박용규
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Performance of the heat pump with attaching an air heat exchanger was investigated in the heating condition when the air heat exchanger was worked in the ambient air temperature of -5 to 11$\^{C}$ and air flow rate of 542 to 747 ㎡/h. Performance tests for heating condition were conducted in an experimental room equipped with heat pump. The performance tests were performed in a ambient temperature of -4 ∼ 11$\^{C}$, and room temperature of 4∼22$\^{C}$ respectively. Measured data(temperature, capacity of heat transfer and consumption of electronic power) were analyzed to the efficiency of HEEVA(Heat Exchanger fur the Evaporator), overall heat transfer coefficient and COP of heat pump. The results of inlet temperature for evaporator increased that the temperature was 2 ∼6$\^{C}$, and inlet temperature for condenser decreased that the temperature was 3 ∼ 8$\^{C}$. The results of comparing efficiency of HEEVA for the ratio of heat exchange between hot air and cold air showed that efficiency were considered to 91% because of the ratio of 83∼98%. The results of comparing of COP for the heat pump increased that improvement COP was approximately 0.3∼7.5 than HEEVA had not been operated.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump (강변여과수 열원 히트펌프 온실난방 성능시험)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF

Experimental Study on the Coefficient of Performance of a Small Absorption Refrigerator (소형 흡수식 냉동기의 성적계수에 관한 실험적 연구)

  • Lee Sun Kyoo;Kim Sang Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.176-184
    • /
    • 1987
  • The purpose of this research is to study the characteristics of the coefficient of perform-ance (COP) of the small absorption refrigeration system. This experimental study is performed with two selected variables, the temperature of the generator and the input temperature of the cooling water. In order to determine the input temperature of the generator which gives maximum COP, the experimental data are obtained with controlling the temperature of the generator in the range of $20-32^{\circ}C$ of the temperature of the cooling water. The range of the generator heat suppling temperature which gives maximum efficiency is about $90-95^{\circ}C.$ The temperature range depends on the characteristics of the equipment unit. The most important result in this experiment is the trends of the COP in accordance with the variation of these temperatures. This trend will furnish the informations and knowledges for designing and operating the absorption refrigerator.

  • PDF

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water (폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석)

  • Kang, Byung-Ha;Kim, Young-In;Lee, Chun-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.4
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF

The Characteristic of Inverter Control by Variation of Refrigeration Load and Outdoor Temperature on Industrial Cooler (외기온도와 부하변화에 따른 산업용 냉각기의 인버터제어 특성)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.150-155
    • /
    • 2014
  • This paper presents The performance analysis of inverter control type-industrial cooler with respect to refrigeration load and outdoor temperature. Aside from materials about simulations and foundation data regarding inverter control compressors, currently, data about commercial coolers with inverter control still lack information for performance comparison. Thus, in this paper, the experiments are done to see characteristics of condensation capacity, evaporation capacity, compressor power and COP with respect to outdoor temperature and load by using a commercial inverter control cooler model. As a result, COP difference of the inverter control cooler with respect to load is 30% at the outdoor temperature of $35^{\circ}C$, 29% at the outdoor temperature of $30^{\circ}C$, 34% at $25^{\circ}C$, respectively.

Effect of the Heat Exchange between Low and High Temperature Refrigerant on the Heat Pump Performance (저온측과 고온측 냉매간 열교환이 열펌프의 성능특성에 미치는 영향)

  • 이건중;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.343-350
    • /
    • 1999
  • The ambient air is commonly used as low-temperature heat source for heat pump operation. However, the coefficient of performance(COP) of the air to water heat pump is decreased with the ambient air temperature drop. In this study to solve this problem, the AVACTHE(Automatic Variable Area Capillary Type Heat Exchanger) with 3 levels of heat exchange area(0, 1,495.4, 1,794.5$\textrm{cm}^2$)was installed in the refrigerant circuit of the heat pump. The AVACTHE effect on the performance of heat pump was tested with the ambient air temperature variation. The COP improvement of the heat pump could be achieved by the AVACTHE installation when below -5$^{\circ}C$ of the ambient air temperature.

  • PDF