• Title/Summary/Keyword: COOLING EFFECT

Search Result 2,349, Processing Time 0.023 seconds

Effects of performance analysis of a desiccant cooling system with a direct evaporative cooler in the regeneration process (재생 입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.633-638
    • /
    • 2009
  • In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.

  • PDF

Heat Transfer Analysis above L$N_2$ Surface in HTS Transformer (HTS변압기에서 액체질소 표면 상부의 열전달 해석)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.174-177
    • /
    • 2003
  • Cooling load from the top plate to L$N_2$ surface, including wall conduction, gas conduction, radiation, and current leads, is investigated in a closed cooling system for HTS transformer. In general methods of load calculation, individual load is estimated separately, but they are actually coupled each other because of natural convection of nitrogen vapor. Using heat transfer analysis, we calculate cooling load with taking into account the effect of natural convection. Cooling load is under- estimated approximately 2 % when the natural convection is ignored. If the operating current is high, there will be a wide difference between actual cooling load and cooling load by individual calculation. Cooling load decreases with increasing number of radiation shield. With production, construction, and cooling load, three radiation shields are proper to 1 MVA HTS transformer.

  • PDF

A Study on automatic optimization of cooling circuit design in injection mold (사출금형 냉각회로의 최적설계자동화에 관한 연구)

  • Chang, H.K.;Jung, H.W.;Lee, Y.J.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.262-265
    • /
    • 2007
  • Cooling circuit of injection mold affects part quality and cycle time of injection molding process. Examination on mold cooling circuit is usually omitted in part design stage because cooling circuit is designed in the mold design stage. It is desirable to examine mold cooling circuit with respect to part quality in the part design stage. In order to make the examination process convenient and fast, cooling circuit design should be automated without intervention of skilled designer. In this study, optimization of cooling circuit design is automated with commercial softwares; Visual DOC and Moldflow MPI. Effect of initial value for optimization is examined for the optimization result.

  • PDF

Cooling Method of the Actuating Motor Using Heat Pipe (히트파이프를 이용한 구동모터에 대한 냉각기술에 관한 연구)

  • Noh, Sang-Hyun;Lee, Dong-Ryul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1168-1173
    • /
    • 2006
  • This research is to verify the cooling effect of the acting surface on the rotary motor using heat pipe and conventional cooling fan. In order to show the cooling performance of the rotary motor and heat pipe with the fin-typed heat sink, the surface temperature of the motor and condenser was measured in real time. The experiments were also conducted as for not only cooling device installed with heat pipe only, but with heat pipe and conventional cooling fan simultaneously.

  • PDF

Effect of Quality Change of 'Fuji' Apple by Pressure Cooling (차압예냉 처리가 '후지' 사과의 품질 변화에 미치는 영향)

  • Park Hyung-Woo;Kim Sang-Hee;Cha Hwan-Soo;Kim Yoon-Ho;Choi Jee-Young
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.427-431
    • /
    • 2006
  • The research was conducted to measure the effect of pressure cooling of 'Fuji' apple during of 24 weeks. Weight loss in pressure cooling was lower than control at 24th week, and firmness in pressure cooling was higher than control. Titratable acidity in control and pressure cooling was 0.0823% 0.1103% in 24 weeks, respectively. Soluble solid content (SSC) in pressure cooling were higher than control. Decayed rate in control and pressure cooling was 46.4% 34.5% in 24 weeks, respectively. Total ascorbic acid contents were decreased in control and pressure cooling during 24 weeks. Therefore, it could be suggested that pressure cooling is more effective than control in storage of 'Fuji' apple.

Effect of cooling water temperature on the temperature changes in pulp chamber and at handpiece head during high-speed tooth preparation

  • Farah, Ra'fat I.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2019
  • Objectives: It was the aim of this study to evaluate the effect of cooling water temperature on the temperature changes in the pulp chamber and at the handpiece head during high-speed tooth preparation using an electric handpiece. Materials and Methods: Twenty-eight intact human molars received a standardized occlusal preparation for 60 seconds using a diamond bur in an electric handpiece, and one of four treatments were applied that varied in the temperature of cooling water applied (control, with no cooling water, $10^{\circ}C$, $23^{\circ}C$, and $35^{\circ}C$). The temperature changes in the pulp chamber and at the handpiece head were recorded using K-type thermocouples connected to a digital thermometer. Results: The average temperature changes within the pulp chamber and at the handpiece head during preparation increased substantially when no cooling water was applied ($6.8^{\circ}C$ and $11.0^{\circ}C$, respectively), but decreased significantly when cooling water was added. The most substantial drop in temperature occurred with $10^{\circ}C$ water ($-16.3^{\circ}C$ and $-10.2^{\circ}C$), but reductions were also seen at $23^{\circ}C$ ($-8.6^{\circ}C$ and $-4.9^{\circ}C$). With $35^{\circ}C$ cooling water, temperatures increased slightly, but still remained lower than the no cooling water group ($1.6^{\circ}C$ and $6.7^{\circ}C$). Conclusions: The temperature changes in the pulp chamber and at the handpiece head were above harmful thresholds when tooth preparation was performed without cooling water. However, cooling water of all temperatures prevented harmful critical temperature changes even though water at $35^{\circ}C$ raised temperatures slightly above baseline.

Fabrication of active cooling e-Textiles (스마트 의류용 전도성 직물의 제조 및 특성 분석)

  • Lee, Seung-A;Lee, Chang-Hwan;Kim, Ki-Tai;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2008
  • Cooling function is definitely one of the most desirable attribute of clothing. In spite of the recent progress on phase changing material(PCM) research, the final products with sufficient amount of cooling capability have not yet to be developed in market. A new concept of cooling fabrics has been proposed by applying "Peltier effect" to textile materials. It occurs whenever electrical current flows through two dissimilar conductors; depending on the direction of current flow, the junction of the two conductors is absorbed or released heat. This effect has been tested on P-type and N-type conducting polymers. A P-type conductive polypyrrole coated fabric was synthesized by in-situ polymerization on plain weave PET to make conductive fabrics. And an N-type electrically conductive material was synthesized by treatment of MWNT and polyethyleneimine(PEI). A noticeable amount of temperature difference has been found on the fabrics.

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

Chemical Cleaning of Copper Corrosion Product Using EDTA.2Na Salt and Effect of Surface Treatment by NALCO-39L (EDTA.2Na를 이용한 구리 부식생성물의 화학세정 및 NALCO-39L에 의한 표면처리효과)

  • 이한철;이창우;현성호
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.86-92
    • /
    • 1999
  • This study was carried out to investigate the effect of chemical cleaning of corrosion product on cooling system made of copper as a basic material and using cooling water as pure water. We studied chemical cleaning condition that minimizes the influence on basic material by means of EDTA solution so as to eliminate the slurry in cooling system. In addition, the proper amount of NALCO-39L (Nitrite-Borate-BZT mixture) as a inhibitor was determined in order to protect the copper in cooling system against corrosion after chemical cleaning and the effect of corrosion resistance on the copper surface treated was excelent in comparison with surface untreated. As a result, we found that the main components of sludge in cooling system produced by corrosion of copper were $Cu_2O$, CuO, Cu, and Fe. The optimum condition of chemical cleaning was 400ppm EDTA solution at $60^{\circ}C$. Inhibitor concentration needed to treat the surface of pure copper was 15~20ppm per unit area and corrosion rate of copper treated with 500ppm inhibitor solution for 72 hrs at $60^{\circ}C$ was remarkably decreased as compared with that of pure copper.

  • PDF

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

  • Sulowski, Maciej;Cias, Andrzej;Frydrych, Hanna;Frydrych, Jerzy;Olszewska, Irena;Golen, Ryszard;Sowa, Marek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.563-564
    • /
    • 2006
  • The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at $1120^{\circ}C$ and $1250^{\circ}C$ in $H_2/N_2$ atmospheres and cooled with cooling rates $1.4^{\circ}C/min$ and $6.5^{\circ}C/min$. Convective cooled specimens were subsequently tempered at $200^{\circ}C$ for 60 and 240 minutes.

  • PDF