• Title/Summary/Keyword: CONTRAST

Search Result 13,847, Processing Time 0.035 seconds

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

Measuring T1 contrast in ex-vivo prostate tissue at the Earth's magnetic field

  • Oh, Sangwon;Han, Jae Ho;Kwon, Ji Eun;Shim, Jeong Hyun;Lee, Seong-Joo;Hwang, Seong-Min;Hilschenz, Ingo;Kim, Kiwoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • A former study has shown that the spin-lattice relaxation time ($T_1$) in cancerous prostate tissue had enhanced contrast at an ultra-low magnetic field, $132{\mu}T$. To study the field dependence and the origin of the contrast we measured $T_1$ in pairs of ex-vivo prostate tissues at the Earth's magnetic field. A portable and coil-based nuclear magnetic resonance (NMR) system was adopted for $T_1$ measurements at $40{\mu}T$. The $T_1$ contrast, ${\delta}=1-T_1$ (more cancer)/$T_1$(less cancer), was calculated from each pair. Additionally, we performed pathological examinations such as Gleason's score, cell proliferation index, and micro-vessel density (MVD), to quantify correlations between the pathological parameters and $T_1$ of the cancerous prostate tissues.

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate (금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율)

  • Lee, Chang-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.114-119
    • /
    • 2021
  • A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

Four Segmentalized CBD Method Using Maximum Contrast Value to Improve Detection in the Presence of Reverberation (최대 컨트라스트 값을 이용한 4분할 CBD의 잔향 감소기법)

  • Choi, Jun-Hyeok;Yoon, Kyung-Sik;Lee, Soo-Hyung;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.761-767
    • /
    • 2009
  • The detection of target echoes in a sonar image is usually difficult since reverberation is originated by the returns reflected around the boundary and volumes. Under the scenario of the target presence around the reverberation, the detection performance of existing algorithms is degraded. Since they have a similar statistical features. But proposed detector gives improvement existing algorithms Under this scenario. In this paper, 4 segmentation contrast box algorithm using maximum contrast value is proposed based on statistical segmentation, which gives better detection performance in the sense of reducing false alarms. The simulations validate the effectiveness of the proposed algorithm.

Hepatic Cavernous Hemangioma in Cirrhotic Liver: Imaging Findings

  • Jeong-Sik Yu;Ki Whang Kim;Mi-Suk Park;Sang-Wook Yoon
    • Korean Journal of Radiology
    • /
    • v.1 no.4
    • /
    • pp.185-190
    • /
    • 2000
  • Objective: To document the imaging findings of hepatic cavernous hemangioma detected in cirrhotic liver. Materials and Methods: The imaging findings of 14 hepatic cavernous hemangiomas in ten patients with liver cirrhosis were retrospectively analyzed. A diagnosis of hepatic cavernous hemangioma was based on the findings of two or more of the following imaging studies: MR, including contrast-enhanced dynamic imaging (n = 10), dynamic CT (n = 4), hepatic arteriography (n = 9), and US (n = 10). Results: The mean size of the 14 hepatic hemangiomas was 0.9 (range, 0.5-1.5) cm in the longest dimension. In 11 of these (79%), contrast-enhanced dynamic CT and MR imaging showed rapid contrast enhancement of the entire lesion during the early phase, and hepatic arteriography revealed globular enhancement and rapid filling-in. On contrast-enhanced MR images, three lesions (21%) showed partial enhancement until the 5-min delayed phases. US indicated that while three slowly enhancing lesions were homogeneously hyperechoic, 9 (82%) of 11 showing rapid enhancement were not delineated. Conclusion: The majority of hepatic cavernous hemangiomas detected in cirrhotic liver are small in size, and in many, hepatic arteriography and/or contrast-enhanced dynamic CT and MR imaging demonstrates rapid enhancement. US, however, fails to distinguish a lesion of this kind from its cirrhotic background.

  • PDF

The usefulness of the contrast agent high in gadolinium for the contrast-enhanced magnetic resonance hip arthrography (고관절의 자기공명관절조영검사 시 가돌리늄 함유량이 높은 조영제의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Ho-Beom;Na, Sa-Ra;Min, Jung-Whan;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5682-5688
    • /
    • 2013
  • The purpose of this study is to maximize diagnositc usefulness with increasing signal to noise ratio(SNR) and contrast to noise ratio(CNR) by using a 1mmol/mL gadolinium contrast agent. From January 2012 to June 2013 fourty-seven patients were underwent the MRI scanning to investigate the contrast difference in gadolinium content. Twenty of the patients were injencted the commercial contrast agent containing 0.5mmol/mL gadolinium and the rest of them were injected the new contrast agent containing 1mmol/mL gadolinium called gadobutrol. We measured and evaluated each SNR and CNR of the hip joint space, iliopsoas muscle and femoral head. As a result, using the 1mmol/mL gadolinium contrast agent had the higher SNR results than using the 0.5mmol/mL agent(27% in the hip joint, 30.01% in the femoral head). Also CNR using the 1mmol/mL gadolinium agent was proved to be higher than that of using 0.5mmol/mL agent(28.31% in the ilopsoas muscle and 26.74% in the femoral head). Therefore, the contrast agent containing more gadolinium like 1mmol/mL used in this study is more effective to shorten T1 relaxation time, so it increases the signal intensity and CNR and furthermore maximizes diagnostic value. This study reports the usefulness of the 1mmol/mL contrast agent in the contrast-enhanced magnetic resonance hip arthrography for the first. Therefore, it can be considered to have an meaningful academic value as showing the method for increasing the diagnostic usefulness by using the 1mmol/mL contrast agent.

Patients with brain metastases the usefulness of contrast-enhanced FLAIR images after delay (뇌전이 환자의 조영 증강 후 지연 FLAIR 영상의 유용성)

  • Byun, Jae-Hu;Park, Myung-Hwan;Lee, Jin-Wan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • Purpose: FLAIR image is beneficial for the diagnosis of various bran diseases including ischemic CVS, brain tumors and infections. However the border between the legion of brain metastasis and surrounding edema may not be clear. Therefore, this study aims to investigate the practical benefits of delayed imaging by comparing the image from a patient with brain metastasis before a contrast enhancement and the image 10 minutes after a contrast enhancement. Materials and methods: Of the 92 people who underwent MRI brain metastases in suspected patients 13 people in three patients there is no video to target the 37 people confirmed cases, and motion artifacts brain metastases in our hospital June-December 2013, 18 people measurement position except for the three incorrect patient (male: 11 people, female: 7 people, average age: 60 years) in the target, test equipment, 3.0T MR System (ACHIEVA Release, Philips, I was 8ChannelSENSE Head Coil use Best, and the Netherlands). TR 11000 ms, TE 125 ms, TI2800 ms, Slice Thickness 5 mm, gap 5 mm, is a Slice number 21, the parameters of the 3D FFE, T2 FLAIR variable that was used to test, TR 8.1 ms, TE 3.7 ms, Slice number 240 I set to. The experiment was conducted by acquiring the FLAIR prior to contrast enhancement (heretofore referred to as Pre FLAIR), and acquiring the 3D FFE CE five minutes after the contrast enhancement, and recomposing the images in an axial plane of S/T 3mm, G 0mm (heretofore referred to as MPR TRA CE). Using the FLAIR 10 minutes after the contrast enhancement (heretofore referred to as Post FLAIR) and Pi-View, a retrospective study was conducted. Using MRIcro on the image of a patient confirmed for his diagnosis, the images before and after the contrast media, as well as the CNR and SNR of the MPR TRA CE images of the lesion and the site absent of lesion were compared and analyzed using a one-way analysis of variance. Results: CNR for Pre FLAIR and Post FLAIR were 34.35 and 60.13, respectively, with MPR TRA CE at 23.77 showing no significant difference (p<0.050). Post-experiment analysis shows a difference between Pre FLAIR and Post FLAIR in terms of CNR (p<0.050), but no difference in CNR between Post FLAIR and MPR TRA CE (p>0.050), indicating that the contrast media had an effect only on Pre FLAIR and Post FLAIR. The SNR for the normal site Pre FLAIR was 106.43, and for the lesion site 140.79. Post FLAIR for the normal site was 107.79, and for the lesion site 167.91. MPR TRA CE for the normal site was 140.23 and for the lesion site 183.19, showing significant difference (p<0.050), and post-experiment analysis shows that there was a difference in SNR only on the lesion sites for Pre FLAIR and Post FLAIR (p<0.050). There was no difference in SNR between the normal site and lesion site for Post FLAIR and MPR TRA CE, indicating no effect from the contrast media (p>0.050). Conclusions: This experiment shows that Post FLAIR has a higher contrast than Pre FLAIR, and a higher SNR for lesions, It was not not statistically significant and MPR TRA CE but CNR came out high. Inspection of post-contrast which is used in a high magnetic field is frequently used images of 3D T1 but, since the signal of the contrast medium and the blood flow is included, this method can be diagnostic accuracy is reduced, it is believed that when used in combination with Post FLAIR, and that can provide video information added to the diagnosis of brain metastases.

  • PDF

Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent (CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰)

  • Sung-Gil Kim;Yeon-Sang Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.827-833
    • /
    • 2023
  • CT(Computed Tomography) contrast agents are commonly used in general hospitals and university hospitals when taking radiographic examinations. The CT contrast medium contains a mixture of a substance called "Iodine", which absorbs radiation energy and makes it appear white in the CT image, further improving the image quality. In addition, the CT contrast agent, which moves like blood in the blood vessels, clearly differentiates it from muscle and water, so CT contrast agents are widely used in hospitals. These CT contrast agents absorb X-rays, but in order to absorb X-rays, they must have a high density or a high radiation absorption coefficient. Since the CT contrast agent is injected into the blood vessels, if the density is high, the blood vessels are strained and the patient is in shock. For this reason, it is necessary to match the density similar to that of water and always pay attention to side effects. In addition, the amount of CT contrast medium is adjusted according to the patient's body shape, and the remaining contrast medium is discarded. However, This study tried to find out the idea of recycling it as a radiation shielding material. Since the CT contrast medium has a high radiation absorption coefficient at a density similar to that of water, the amount to absorb radiation is adjusted, the amount of contrast medium and the amount of water are adjusted, and the amount of radiation absorbed is determined by mixing with water. In addition, a study was conducted to find out the result of the difference in radiation absorption in various ways by comparing the radiation quality coefficient and absorption coefficient with other substances or materials in an environmentally friendly method harmless to the human body by mixing CT contrast medium and water.

Contrast Media in Abdominal Computed Tomography: Optimization of Delivery Methods

  • Joon Koo Han;Byung Ihn Choi;Ah Young Kim;Soo Jung Kim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • Objective: To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed. Materials and Methods: In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range. Results: A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2 3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased. Conclusion: Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.

  • PDF

컴퓨터 모니터의 Contrast/Brightness가 색재현에 미치는 영향

  • 박승옥;김홍석;최재호
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.181-187
    • /
    • 1998
  • 컬러영상은 흑백 영상에 비해 보기 아름다울 뿐만 아니라 보다 다양하고 현실적인 정보를 나타낼 수 있으며, 특히 색의 대비를 이용하여 특정한 부분의 가시도를 높일 수 있는 장점이 있다. 최근에는 컬러 모니터의 대중화와 말티미디어 기술의 보급으로 인하여 대부분의 컴퓨터 사용자가 칼라 디스플레이를 사용하고 있으며, 이를 이용한 영상의 재현 및 제품 디자인이 자연스러운 영상색의 재현은 정확한 정보 의 전달 뿐만 아니라 사용자의 만족도 및 감성적 제품 개발에 중요한 요인이 되고 있다. 본 연구에서는 색을 가장 자연스러운 상태로 재현할 수 있는 Contrast/Brightness 상태를 알아보고, Contrast/Brightness 변화가 화면에 재현된 영상색에 미치는 영향에 대하여 분석하였다.

  • PDF