• 제목/요약/키워드: CONTACT ANGLE

검색결과 2,244건 처리시간 0.033초

표면조도가 나노유체 액적의 접촉각에 미치는 영향 (Effects of Surface Roughness on Contact Angle of Nanofluid Droplet)

  • 김영찬
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.559-566
    • /
    • 2013
  • 본 연구에서는 고체의 표면조도가 나노유체 액적의 접촉각에 미치는 영향에 대해 실험적 연구를 수행하였다. 나노유체는 산화구리(CuO) 나노분말을 순수 물과 혼합하여 제조하였으며, 고체는 한 변의 길이가 10 mm 정육면체 구리시편을 실험에 사용하였다. 나노유체 액적의 접촉각은 동일한 표면조도 조건에서 순수 물 액적의 접촉각 보다 다소 낮게 측정되었으며, 구리시편의 표면조도가 증가할수록 순수 물과 나노유체 액적의 접촉각은 모두 증가하고 있음을 실험결과로부터 알 수 있었다. 또한 가열-급냉(quench) 실험을 거친 구리시편 표면에서의 접촉각은 순수 표면에서의 접촉각보다 다소 낮게 측정되었으며, 이는 구리표면의 산화에 기인하는 것으로 판단된다. 그러나 가열-급냉 실험에 있어서 냉각 액체로서 순수 물과 나노유체를 사용한 경우의 액적 접촉각 측정결과들은 큰 차이가 없는 것으로 나타났으며, 이러한 실험결과로부터 냉각과정에 있어서 나노입자가 액적의 접촉각에 영향을 미칠 정도로 구리시편의 표면상태를 변화시키지 못하는 것으로 생각된다.

볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계 (Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing)

  • 최동철;김태완
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

부가중합형 실리콘 교합인기재의 탄성 특성 (Elastic properties of addition silicone interocclusal recording materials)

  • 이영옥;김경남
    • 한국치위생학회지
    • /
    • 제12권3호
    • /
    • pp.513-520
    • /
    • 2012
  • Objectives : In this study, contact angle and shore D hardness were measured, and a shark fin test was conducted after selecting five addition silicon(Blu-Mousse, BM; EXABITE II, EX; PERFECT, PF; Regisil$^{(R)}$ Rigid, RE; Silagum$^{(R)}$, SI) in order to figure out the properties of elastomeric interocclusal recording materials and reduce errors at interocclusal recording. 8) Methods : A contact angle was measured using a contact angle analyzer. After placing a drop of liquid on the surface of the specimens of interocclusal recording materials, a contact angle was photographed with a CCD camera on the equipment. In terms of a shark fin test, interocclusal recording materials were mixed for the time proposed by the manufacturer and inserted into the split ring of the Shark fin device. Twenty (20) seconds exactly, a metal rod was removed to make the materials slowly absorbed. Once they hardened, fin height was measured with a caliper after separating molds and trimming the specimens. The shore D hardness was measured with a shore D hardness tester(Model HPDSD, Hans Schmidt & Co. Gmbh, Germany) in sixty (60) minutes after fabricating specimens. In each experiment, five specimens, mean and standard deviation were calculated. A one-way ANOVA test was performed at the p>0.05 level of significance. In terms of correlation among the tests, Pearson correlation coefficient was estimated. For multiple comparison, Scheffe's test was carried out. Results : A contact angle was the highest in EX with $99.23^{\circ}$ (p<0.05) while the result of the shark fin test was the longest in RE with 5.45mm. SI was the lowest (0.27mm) with statistical significance. Among the interocclusal recording materials, significant difference was observed in terms of means (p<0.05). The shore D hardness was the highest in SI with 31.0 while RE was significantly low with 16.4 (p<0.05). Among the materials, statistically significant difference was observed in terms of means when compared to the rest materials (RE), BM, RE and SI (PF and EX) and the remaining materials (BM and SI) (p<0.05). In terms of correlations among the tests, a negative correlation occurred between shore D hardness and shark fin test(r=-0.823, p=0.000). Conclusions : According to the study above, it is necessary to understand the properties of interocclusal recording materials and consider contact angle, shark fin test and properties of shore D hardness to select appropriate materials.

대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구 (Surface Modification of TiO2 by Atmospheric Pressure Plasma)

  • 조상진;정충경;김성수;부진효
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.22-27
    • /
    • 2010
  • $TiO_2$의 표면의 친수성을 증가시키기 위하여 dielectric barrier discharge (DBD)에 의해 발생된 대기압 플라즈마 (atmospheric pressure plasma: APP)를 이용 RF power 50~200 W 범위에서 Ar과 $O_2$ 가스를 사용 대기압 플라즈마로 광촉매 표면을 개질하였다. Ar 가스 단독으로 처리한 시료의 접촉각은 20도에서 10도로 감소하였으며, $O_2$ 가스를 반응성 가스로 하여 처리한 경우에는 접촉각이 20도에서 1도 미만으로 감소하였다. 동일한 RF power에서 $O_2$ 플라즈마 처리 시 더 낮은 접촉각을 확인하였는데, 이는 $TiO_2$ 표면과 산소원자의 결합으로 인하여 표면의 polar force의 증가에 의한 것으로 판단되어 대기압 플라즈마로 처리된 시료의 X-ray photoelectron spectroscopy (XPS)의 스펙트럼 분석결과 OH 작용기의 증가로 표면의 친수성이 증가됨을 확인하였다. 대기압 플라즈마로 처리된 시료와 처리하지 않은 시료의 접촉각은 모두 시간이 지남에 따라 증가하지만 플라즈마 처리 된 시료의 접촉각 증가는 플라즈마 처리하지 않은 시료의 접촉각 보다 작은 것을 확인하였다. 또한, 페놀 분해 실험을 통하여 플라즈마 표면처리를 통하여 $TiO_2$ 광촉매의 분해 효율이 크게 향상되는 것을 확인하였다.

경사면상의 층류 세류유동 특성 (Flow Characteristics of a Laminar Rivulet Down an Inclined Surface)

  • 김병주
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1035-1042
    • /
    • 2005
  • In the present study, the principle of minimum energy is employed to configure the shape of rivulet flowing down an inclined surface. The profile of laminar rivulet is determined by numerical integration. The maximum center thickness, which corresponds to the minimum thickness of falling film, is found to exist regardless of liquid flow rate and is compared with the analytical and experimental data. At small liquid flow rate the center thickness of rivulet and its width increase almost linearly with flow rate. Once the center thickness of rivulet becomes very close to its maximum value, its growth rate retards abruptly. However the width of rivulet increases proportionally to the liquid flow rate and most part of its free surface is as flat as that of stable film. The growth rate of rivulet thickness with respect to liquid flow rate becomes larger at bigger contact angle. The width of rivulet increases rapidly with its flow rate especially at small contact angle, As the liquid-vapor interfacial shear stress increases, the center thickness of rivulet decreases with its flow rate, which is remarkable at small contact angle. However the effect of interfacial shear stress on the width of rivulet is almost negligible.

액적의 구름저항에 대한 정접촉각 및 거칠기의 영향 (Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet)

  • 조원경;조상욱;김두인;김대업;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2016
  • 본 연구에서는 소수성 구현을 위한 표면 거칠기가 접촉각과 접촉각 이력에 미치는 영향을 평가하였다. 초발수 특성을 극대화하기 위해, 액적이 이동하기 위해 필요한 구름저항력을 제안하였으며, 이에 대한 평가를 통하여 표면에 형성한 패턴이 접촉각 이력 및 구름저항력에 큰 영향을 주는 것을 확인하였다. 초발수 특성이 요구되는 실제 응용을 위해서는 액적의 이동에 필요한 에너지를 최소화하기 위하여 접촉각을 극대화하고 동시에 접촉각 이력을 최소화하기 위한 표면 패턴 형상의 최적화가 요구됨을 확인하였다.

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

플랜트 부품용 상용 발수코팅의 고온 환경 고장 특성 비교 분석 (Failure Analysis of Commercial Water-Repellent Coatings for High Temperature Plant)

  • 이병호;김혜영;현창용;변재원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권1호
    • /
    • pp.78-82
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate failure characteristic and mechanism of four commercial water-repellent coatings for elevated temperature machinery applications. Method: Thermal degradation was performed for up to 64 thermal cycles. 1 cycle consists of 15 minute holding at 523K under 300rpm revolution and 15 minute-natural cooling. Contact angle was measured and microstructure of the coating layer was observed by using a scanning electron microscope. Results: Four kinds of commercial repellent coating showed hydrophobic or super-hydrophobic property implying that all coatings are suitable for room temperature application. Contact angle of three kinds of commercial coatings decreased rapidly after thermal exposure, while only one specimen having hydrophobic surface showed extremely slow degradation. Conclusion: Observed decrease in contact angle of the coatings were attributed to formation of macro-sized pores and disappearance of micro-protrusion during thermal exposure. Optimum water-repellent coating needs to be selected under the consideration of initial contact angle as sell as service temperature.

상압 플라즈마 표면처리에 의한 고분자 재질의 표면특성변화 (Surface Characteristics of Polymer Material Treated by Atmospheric Pressure Plasma)

  • 서승호;장성환;유영은;정재동
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.282-288
    • /
    • 2010
  • Experiment on the surface characteristics of polymer films treated by atmospheric pressure plasma has been conducted. We chose the process parameters as frequency, gas flow, treatment time, and scrutinized the effects of the process parameters on the surface characteristics of polymer materials by measuring the contact angle and examining SEM. As the result, the surface characteristics highly depends on frequency, reaction gas and treatment time. In the case of PC substrate, the contact angle was changed from $83.5^{\circ}$ (before plasma treatment) to $30^{\circ}$ (after plasma treatment) at 30 kHz, CDA 0.6%, and number of repeat 7. In the case of PET substrate, the contact angle change was found from $59^{\circ}$ to $23.5^{\circ}$ at 20 kHz, CDA 0.6%, and number of repeat 7. In the case of EVA substrate, it shows from $84^{\circ}$ to $44.2^{\circ}$ at 30 kHz, CDA 0.6%, and number of repeat 7.