• Title/Summary/Keyword: COII

Search Result 27, Processing Time 0.021 seconds

Cytochrome Oxidase Subunit II (COII) Sequence Analysis of Root-knot Nematode, Meloidogyne sp. HSC, Infesting Yam (Dioscorea bulbifera) (둥근마(Dioscorea bulbifera)를 가해하는 뿌리혹선충(Meloidogyne sp. HSC)의 Cytochrome Oxidase Subunit II (COII) 염기서열 분석)

  • Han, Sang-Chan;Kang, Sang-Jin;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.169-173
    • /
    • 2007
  • Root-knot nematode damage was found on yam, Dioscorea bulbifera in Andong Korea. From the root-knots, female nematodes were isolated and subjected to DNA sequence analysis. Sequence of cytochrome oxidase subunit II (COII) was analyzed from the genomic DNA of the isolate. COII locus size and sequence of the nematode isolate were similar to those of Meloidogyne javanica or M. incognita. However, an analysis of HinfI restriction site, a species-specific character between these two species, showed that the isolate did not match to either M. javanica or M. incognita.

Molecular Phylogeny of the Family Tephritidae (Insecta: Diptera): New Insight from Combined Analysis of the Mitochondrial 12S, 16S, and COII Genes

  • Han, Ho-Yeon;Ro, Kyung-Eui
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.55-66
    • /
    • 2009
  • The phylogeny of the family Tephritidae (Diptera: Tephritidae) was reconstructed from mitochondrial 12S, 16S, and COII gene fragments using 87 species, including 79 tephritid and 8 outgroup species. Minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) A sister group relationship between Ortalotrypeta and Tachinisca, and their basal phylogenetic position within Tephritidae; (2) a sister group relationship between the tribe Acanthonevrini and Phytalmiini; (3) monophyly of Plioreocepta, Taomyia and an undescribed new genus, and their sister group relationship with the subfamily Tephritinae; (4) a possible sister group relationship of Cephalophysa and Adramini; and (5) reconfirmation of monophyly for Trypetini, Carpomyini, Tephritinae, and Dacinae. The combination of 12S, 16S, and COII data enabled resolution of phylogenetic relationships among the higher taxa of Tephritidae.

COII Sequence-based Study for Population Genetic Variation of a Ground Beetle, Scarites aterrimus (Coleoptera : Carabidae)

  • Wang, Ah-Rha;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.24 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • The Scarites aterrimus (Coleoptera: Carabidae) dwells exclusively on coastal sandy dunes. Previously, we investigated the nation-wide magnitude and nature of genetic diversity of the species using mitochondrial COI gene and found moderate to low magnitude of sequence diversity, the presence of closely related haplotypes, and relatively high gene flow estimate. Based on these observations we concluded that the species had no historical barriers that bolster genetic subdivision and possible population decline. In this study, we additionally sequenced mitochondrial COII gene from 23 individuals collected from 9 Korean localities to confirm previous findings. Sequencing of 688 bp COII gene provided 5 haplotypes ranging in sequence divergence from 0.145% to 0.291% (1 ~ 2 bp), further confirming low sequence divergence of the species. Gene flow estimates and genetic diversity estimates also support the previous findings that there had been no historical barriers that bolster genetic subdivision.

Distribution of Length Variation of the mtDNA 9-bp Motif in the Intergenic COII/tRNAX$^{Lys}$ Region in East Asian Populations

  • Han Jun Jin;Jeon Won Choi;Dong Jik Shin;Jung Min Kim;Wook Kim
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.393-397
    • /
    • 1999
  • Length variations in human mitochondrial DNA (mtDNA) offer useful markers in the study of female aspects of human population history. One such length variation is a 9-bp deletion in the small noncoding segment located between the COII and Iysine tRNA genes (COII/tRNA/$^{Lys}$ intergenic region) which usually contain two tandemly arranged copies of a 9-bp sequence (ccccctcta) in human mtDNA. The mtDNA 9-bp deletion and polymorphic variants of expanded 9-bp repeat motif in the intergenic COII/tRNA$^{Lys}$ region have been found at varying frequencies among different human ethnic groups. We have examined the length variation of the mtDNA COII/tRNA$^{Lys}$ intergenic region from a total of 813 individuals in east Asian populations. The occurrence of the 9-bp deletion was found to be relatively homogeneous in northeast Asian populations (Chinese, 14.2%; Japanese, 14.3%: Koreans, 15.5%), with the exception of Mongolians (5.1%). In contrast, Indonesians (25.0%) and Vietnamese (23.2%) of the southeast Asian populations appeared to have relatively high frequencies of the 9-bp deletion. We identified the existence of a new expanded 9-bp repeat motif which likely resulted from a slipped mispairing insertion of six more cytosines in the intergenic COII$^{Lys}$ region. It was present at low frequencies in the Korean (2/349) and Japanese populations (2/147). Based on the results of this study, the Korean population may reflect a close genetic affinity with the Japanese and Chinese populations than the others surveyed east Asian populations.

  • PDF

Distribution of the 9-bp Deletion in Coll/$tRNA^{Lys}$ Intergenic Region of Mitochondrial DNA is Relatively Homogeneous in East Asian Populations

  • Hong, Seong-Su;Horai, Satoshi;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.259-267
    • /
    • 1998
  • A deletion of one out of the two copies of 9-bp repeat sequence (CCCCCTCTA), between the cytochrome oxidase II and Iysine tranfer RNA (COII/$tRNA^{Lys}$) genes in human mitochondrial DNA (mtDNA) has been used as a polymorphic anthropological marker for people of east Asian origin, and to lesser extent, Pacific and African populations. We searched for the 9-bp deletion of the intergenic COII/$tRNA^{Lys}$ Lys region in two Korean populations (175 from Seoul and 38 from Cheju) and examine the distibution of this deletion in world populations. The 9-bp deletion was detected directly by electrophoresis of the polymerase chain reaction (PCR)-amplified nucleotide(nt) 8211-8310 mtDNA fragment. The frequencies of the 9-bp deletion were significantly different between the Seoul (16%) and Cheju (8%) populations. Examination of data from the world populations suggests a geographic gradient. The frequency reaches its highest values in some Pacific island populations and decreases along the southeast Asia-Siberia transect. In spite of this geographic gradient, Mongoloid populations including Korean, Chinese, Japanese, and Mongolian populations were relatively homo-geneous with regard to the 9-bp deletion type of the intergenic COII/$tRNA^{Lys}$ region. These results indicate Koreans are genetically related to northeast Asian populations, and have a maternal mongoloid ancestry. Therefore, the 9-bp deletion of the intergenic COII/$tRNA^{Lys}$ region will provide significant information to elucidate the historical patterns of migration of the Mongoloids.

  • PDF

Molecular Systematics of the Genus Megoura (Hemiptera: Aphididae) Using Mitochondrial and Nuclear DNA Sequences

  • Kim, Hyojoong;Lee, Seunghwan
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.510-522
    • /
    • 2008
  • To construct the molecular systematics of the genus Megoura (Hemiptera: Aphididae), DNA based-identification was performed using four mitochondrial and three nuclear DNA regions: partial cytochrome c oxidase I (COI), partial tRNA-leucine + cytochrome c oxidase II (tRNA/COII), cytochrome b (CytB), partial 12S rRNA + tRNA-valine + 16S rRNA (12S/16S), elongation factor-1 alpha ($EF1{\alpha}$), and the internal transcribed spacers 1 and 2 (ITS1, ITS2). Pairwise sequence divergences between taxa were compared, and phylogenetic analyses were performed based on each DNA region separately, and the combined datasets. COI, CytB, $EF1{\alpha}$, ITS1, and ITS2 were relatively effective in determining species and resolving their relationships. By contrast, the sequences of tRNA/COII and 12S/16S were not able to separate the closely related species. CytB and $EF1{\alpha}$ gave better resolution with higher average sequence divergences (4.7% for CytB, 5.2% for $EF1{\alpha}$). The sequence divergence of COI (3.0%) was moderate, and those of the two ITS regions (1.8% for ITS1, 2.0% for ITS2) were very low. Phylogenetic trees were constructed by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses. The results indicated that the phylogenetic relationships between Megoura species were associated with their host preferences. Megoura brevipilosa and M. lespedezae living on Lespedeza were closely related, and M. nigra, monophagous on Vicia venosa, was rather different from M. crassicauda, M. litoralis, and M. viciae, which are oligophagous on Lathyrus and Vicia. The three populations of M. crassicauda formed a clade separated from M. litoralis and M. viciae. Nevertheless M. litoralis and M. viciae, which are morphologically similar, were not separated due to negligible sequence divergence. We discuss the phylogenetic relationships of the Megoura, and the usefulness of the seven DNA regions for determining the species level phylogeny of aphids.

A Phylogenetic Study of Korean Rodents (Muridae, Sciuridae) Based on Mitochondrial and Nuclear DNA

  • Jung, Gi-La;Lee, Seo-Jin;Kim, Chuel-Kyu;Lee, Hang;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • The subfamily Murinae is a very controversial group concerning their phylogenetic relationship. Previous studies could not resolve phylogeny among four genera Apodemus, Micromys, Mus and Rattus of the Muridae. In the present study, eight rodent species resident in South Korea were collected and phylogenetically analyzed based on sequence data of five mitochondrial and nuclear DNA regions: 12S rRNA, cytochrome b gene (cyt b), cytochrome oxidase II (COII), control region of mitochondrial DNA, and a thyroglobulin (Tg) of nuclear DNA. According to the phylogeny of the concatenated data, M. musculus separated early in Murinae (ML 100%; BA 1.00 pp) and the genus Rattus grouped with the harvest mouse, M. minutes; these were separated from the genus Apodemus with relatively strong support (ML 74%; BA 0.76 pp). The Siberian chipmunk population was also examined using the five genes to obtain better resolution. The phylogeny for Korean rodents determined using the 12S rRNA, cyt b, COII and control regions discriminated the Siberian chipmunk populations from Korea, Russia, and China.

Intraspecific Molecular Phylogeny, Genetic Variation and Phylogeography of Reticulitermes speratus (Isoptera:Rhinotermitidae)

  • Park, Yung Chul;Kitade, Osamu;Schwarz, Michael;Kim, Joo Pil;Kim, Won
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.89-103
    • /
    • 2006
  • Population structure was investigated in Reticulitermes speratus populations in the Korean Peninsula and the Japanese Archipelago. All trees derived from analyses of the combined sequence dataset of two mitochondrial genes, COII and COIII, showed that R. speratus populations cluster into two major clades comprising the Korean/southern Japanese populations and the northern Japanese populations. Analysis of population genetic structure showed strong genetic partitioning between populations of the two clades. To understand historical migration routes and current distributions, the phylogeographic history of R. speratus was inferred from intra-/interspecific phylogeny and divergence times estimated between the clades of the phylogenetic tree. The estimated migration route and divergence time of ancestral R. speratus are congruent with recent paleogeographic hypotheses involving land-bridge connections between the Asian continent and the Japanese Archipelago. We suggest that ancestral R. speratus separated into northern and southern Japanese populations after its migration into the Japanese main islands from East China during the early Pleistocene via the East China Sea basin, which may have been exposed during that period. The Korean populations seem to have diverged recently from southern Japanese populations; this may explain the current distribution of R. speratus in the Japanese Arachipelago, and account for why it is restricted to northern areas of the Tokara Strait.