• Title/Summary/Keyword: COI gene

Search Result 162, Processing Time 0.052 seconds

Identification of Four Cyst Nematodes using PCR-RFLP in Korea (PCR-RFLP를 이용한 국내 분포 씨스트선충 4종의 동정)

  • Ko, Hyoung-Rai;Kang, Heonil;Park, Eun-Hyoung;Kim, Eun-Hwa;Lee, Jae-Kook
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.3
    • /
    • pp.353-363
    • /
    • 2019
  • To identify four cyst nematodes (Heterodera schachtii, H. trifolii, H. glycines, H. sojae) that are economically important plant-parasitic nematodes in Korea, restriction fragment length polymorphism (RFLP) by 8 endonucleases (PstI, VspI, AlwI, RsaI, MvaI, EcoRI, Eco72I, Hinf I) was performed based on sequence difference of mitochondrial DNA cytochrome c oxidase subunit I (COI) gene. As a result, species-specific DNA band patterns by RsaI endonuclease were observed in H. schachtii. The specific patterns was in H. trifolii by 3 endonucleases (VspI, AlwI, Hinf I), and was in H. glycines by Hinf I. While, H. sojae was not digested by 4 endonuclease (VspI, AlwI, RsaI, Hinf I). This study showed that four cyst nematodes could be distinguished using RFLP by 4 endonucleases (RsaI, VspI, AlwI, Hinf I) based on the sequence difference of COI gene.

Distribution of the Sea Nettle Chrysaora pacifica (Goette, 1886) (Semaeostomeae; Pelagiidae) in Korea Using Molecular Markers (커튼원양해파리 Chrysaora pacifica (Goette, 1886) (Semaeostomeae; Pelagiidae)의 분자 마커를 이용한 한국내 지리적 분포)

  • Seo, Yoseph;Kim, Dae-Hyun;Chae, Jinho;Ki, Jang-Seu
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.263-270
    • /
    • 2020
  • The distribution and genotypes of the sea nettle Chrysaora pacifica have been reported in the South Sea of Korea; however, little research work has been attempted in the East Sea. Here, we collected similar jellyfishes from the East Sea coasts (Goseong, Yangyang and Sokcho), and identified them to the sea nettle morphologically. In addition, the genotypes of these sea nettle were compared with those from the South Sea (Tongyeong and Geoje). Phylogenetic analysis by using the mitochondrial COI sequences showed that the genus Chrysaora was clearly separated from other taxa to be formed a monophyletic group, with each species distinctly separated. C. pacifica in the East and South Seas was separated geographically by the COI phylogeography, representing potentially different populations. The COI gene of the Korean C. pacifica had approximately 7 times more genetic variation than the nuclear ITS rDNA, and thus it might be considered as a useful marker for genetic analysis of the jellyfish population.

PCR-RFLP patterns of three kinds of Metagonimus in Korea (국내에 존재하는 세 종류 메타고니무스속 흡충의 RCR-RFLP반응양상)

  • 유재란;정진성
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.4
    • /
    • pp.271-276
    • /
    • 1997
  • We tried to compare the three kinds oi Metagonimur species. M. Wokognulci, Ifetafonimus Miyata type, and M. tnknhashii, which were Know to be distributed in Korea with polymerase chain reaction based-restriction fragment length polymorphism (PCR- RFLP) patterns. We amplified the internal transcribed spacer 1 (ITSI) site of ribosomal RNA and mitochondrial cytochrome c oxidase I (mCOI) gene. The restriction patterns of ITSI gene loth Rsc I, ALu I and Msp I showed multiple fragmented bands of different sizes between three kinds of Metcgonimus. In case of mc01 gene, Rsc I and Alu I enzymes produced differentially fragmented band patterns. According to the parsimony analysis of PCR-RFLP patterns, the estimated genetic divergence between M Wokognwai and Metasoninus Miyata type was 0.034880, between Metusoninus Miyata type and M. tckc- hushii was 0.028098, between M. wokogawai and M. tnkahashii was 0.018179. It is suggested that Metasonimus Miyata type may be separate species and evolutionize at the older time than the other two species.

  • PDF

Morphometric and genetic diversity of Rasbora several species from farmed and wild stocks

  • Bambang Retnoaji;Boby Muslimin;Arif Wibowo;Ike Trismawanti
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.569-581
    • /
    • 2023
  • The morphology and genetic identification of Rasbora lateristriata and Rasbora argyrotaenia between cultivated and wild populations has never been reported. This study compares morphology and cytochrome c oxidase (COI) genes between farmed and wild stock Rasbora spp. in Java and Sumatra island, Indonesia. We analyzed the truss network measurement (TNM) characters of 80 fish using discriminant function analysis statistical tests. DNA was extracted from muscle tissue of 24 fish specimens, which was then followed by polymerase chain reaction, sequencing, phylogenetic analysis, fixation index analysis, and statistical analysis of haplotype networks. Basic Local Alignment Search Tool analysis validated the following species: R. lateristriata and R. argyrotaenia from farming (Jogjakarta); Rasbora agryotaenia (Purworejo), R. lateristriata (Purworejo and Malang), Rasbora dusonensis (Palembang), and Rasbora einthovenii (Riau) from natural resources. Based on TNM characters, Rasbora spp. were divided into four groups, referring to four distinct characters in the middle of the body. The phylogenetic tree is divided into five clades. The genetic distance between R. argyrotaenia (Jogjakarta) and R. lateristriata (Malang) populations (0.66) was significantly different (p < 0.05). R. lateristriata (Purworejo) has the highest nucleotide diversity (0.43). R. argyrotaenia from Jogjakarta and Purworejo shared the same haplotype. The pattern of gene flow among them results from the two populations' close geographic proximity and environmental effects. R. argyrotaenia had low genetic diversity, therefore, increasing heterozygosity in cultivated populations is necessary to avoid inbreeding. Otherwise, R. lateristriata (Purworejo) had a greater gene variety that could be used to develop breeding. In conclusion, the middle body parts are a distinguishing morphometric character of Rasbora spp., and the COI gene is more heterozygous in the wild population than in farmed fish, therefore, enrichment of genetic variation is required for sustainable Rasbora fish farming.

Genomic Structure of the Luciferase Gene and Phylogenetic Analysis of the Firefly, Pyrocoelia rufa

  • Jianhong Li;Park, Yong-Soo;Zhao Feng;Kim, Iksoo;Lee, Sang-Mong;Kim, Jong-Gill;Kim, Keun-Young;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • We describe here the complete nucleotide sequence and the exon-intron structure of the luciferase gene of the firefly, Pyrocoelia rufa. The luciferase gene of the P. rufa firefly consisted of six introns and seven exons coding for 548 amino acid residues. From the translational start site to the end of last exon, however, the genomic DNA length of the P. rufa luciferase gene from the Korean and Chinese samples spans 1,968 bp and 1983 bp, respectively, and 3 amino acid residues were different to each other. Additionally, we also analyzed mitochondrial cytochrome oxidase I(COI) gene of the Chinese P. rufa fireflies. Analysis of DNA sequences from the mitochondrial COI protein-coding gene revealed 4 mitochondrial DNA sequence-based haplotypes with a maximum divergence of 0.7%. With the 20 P. rufa haplotypes found in Korea, phylogenetic analyses using PAUP and PHYLIP subdivided the P. rufa into three clades, termed clades A and B for the Korean sample, and clade C for the Chinese sample.

Development of Rapid Detection System for Small Hive Beetle (Aethina tumida) by using Ultra-Rapid PCR (초고속 유전자 증폭법을 이용한 벌집꼬마밑빠진벌레 (Aethina tumida)의 신속한 검출 기법 개발)

  • Kim, Jung-Min;Lim, Su-Jin;Tai, Truong A;Hong, Ki-Jeong;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • For the Rapid detection of small hive beetle (SHB; Aethina tumida) and for the mass-survey against SHB invasion, SHB-specific ultra-rapid PCR system was developed. Three different pairs of Aethina tumida-specific primers were deduced from cytochrome oxidase subunit I (COI) gene in mitochondrial DNA of SHB. Using optimized SHB-specific ultra-rapid PCR, $2.1{\times}10^1$ molecules of COI gene belonged to SHB could be detected specifically and quantitatively within 18 minutes 40 seconds. For the purpose of the application in apiary field, a DNA extraction method from bee debris was separatedly developed. When $10^5$ SHB-specific COI molecules (1/1000 body of SHB larvae) are existed in 1g of bee debris, it could be verified inner 10 minutes as qualitative and quantitative manner. SHB-specific ultra-rapid PCR we proposed would be expected to apply widely, either in apiary field or laboratory, for the rapid detections and the control against SHB-invasion.

Phylogeography of the economic seaweeds Chondrus (Gigartinales, Rhodophyta) in the northwest Pacific based on rbcL and COI-5P genes

  • Yang, Mi Yeon;Kim, Myung Sook
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.135-147
    • /
    • 2022
  • The red algal genus Chondrus have long been used as raw materials for carrageenan and dietary fiber in health foods. Despite the importance of genetic information in safeguarding natural seaweed resources, knowledge of the population genetics of Chondrus in the northwest Pacific is limited. In this study, genetic diversity and phylogeographic structure of 45 populations (777 specimens) of Chondrus from Korea, China, and Japan were evaluated based on mitochondrial COI-5P gene sequences, and phylogenetic relationships were confirmed based on plastid rbcL gene sequences. Molecular analyses assigned the specimens in this study to three Chondrus species: C. nipponicus, C. ocellatus, and C. giganteus; phenotype-based species classification was impossible owing to their high morphological plasticity. We found moderate intraspecific genetic diversity and a shallow phylogeographic structure in both for C. nipponicus and C. ocellatus, and low intraspecific genetic diversity in C. giganteus. Each of the three species exhibited high-level intraspecific gene flow among regions based on the most common haplotypes (CN1 for C. nipponicus, CO1 for C. ocellatus, and CG1 for C. giganteus). Our comprehensive genetic information provides insights into the phylogeographic patterns and intraspecific diversity of the economically important Chondrus species. It also highlights the need to conserve existing natural Chondrus resources through continuous monitoring of genetic diversity and phylogeographic pattern.

Molecular identification and Phylogenetic relationship of the rook (Corvus frugilegus) population in Jeju-do Province, South Korea (제주도에 도래하는 떼까마귀 집단에 대한 분자 종 동정 및 계통 유연관계)

  • Han, Sang-Hyun;Kim, Tae-Wook;Kim, Yoo-Kyung;Park, Jun-Ho;Kim, Dong-Min;Adhikari, Preadeep;Park, Su-Gon;Park, Seon-Mi;Kim, Ga-Ram;Lee, Jun-Won;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.693-702
    • /
    • 2015
  • In order to identify the species and to reveal the phylogenetic relationship of rook populations found in Jeju-do Province in winter seasons, we determined the sequences of mitochondrial cytochrome c oxidase I (COI) gene and analyzed the genetic structure of maternal lineages and phylogenetic relationship. The rook DNAs were isolated from the post-mortem specimens and plumages collected from agricultural farms in Jeju-do Province including U-do Island. The obtained COI sequences (n=41) showed over 97.0% identities with those previously reported from Corvus frugeligus. Three COI haplotypes (J01-J03) were detected from COI sequences of the rooks obtained in Jeju-do Province but those did not show the site-specific patterns, showing that they might be derived from a common maternal origin. Eight maternal haplotypes were detected from all COI sequences obtained. Among those three haplotypes contained the COI sequences from Northeast Asia including eastern Russia, Mongolia and South Korea. On the other hand, the other five haplotypes contained the COI sequences reported from Central Asia, Middle East, western Russia and European countries. The COI sequences from Jeju-do Province were located on three haplotypes (CF01-CF03) belonging to Northeast Asian rook lineages. The NJ tree showed the distinct branch patterns suggesting two different maternal lineages of C. frugilegus, which proposed as two parapatric subspecies, C. f. frugilegus (Western) and C. f. pastinator (Eastern). These findings using DNA barcoding approaches will be contributed to provide the information about avian fauna for understanding the genetic structure of maternal lineage, phylogenetic relationship and their molecular ecology.

DNA Barcoding Korean Birds

  • Yoo, Hye Sook;Eah, Jae-Yong;Kim, Jong Soo;Kim, Young-Jun;Min, Mi-Sook;Paek, Woon Kee;Lee, Hang;Kim, Chang-Bae
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxidase I (COI) might serve as a DNA barcode for identifying animal species such as North American birds, insects and fishes. The present study tested the effectiveness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI barcode for 92 species of Korean birds and found that species identification was unambiguous; the genetic differences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased intra- and interspecies sampling, as well as supplementation of the mitochondrial barcodes with nuclear ones, is needed.