• Title/Summary/Keyword: COD(chemical oxygen demand)

Search Result 513, Processing Time 0.036 seconds

The analysis of variational characteristics on water quality and phytoplankton by principal component analysis(PCA) in Kogum-sudo, Southwestern part of Korea (주성분분석에 의한 거금수도의 수질환경 및 식물플랑크톤 변동 요인 해석)

  • 윤양호;박종식
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • A study on the variational characteristics of water quality and phytoplankton biomass by principal component analysis(PCA) was carried out in Kogum-sudo from February to October in 1993. We analyzed PCA on biological factors such as chlorophyll a and phytoplankton cell numbers for centric and pennate diatoms, phytoflagellates, and total phytoplankton as well as physico-chemical factors as water temperature, salinity, transparency, dissolved oxygen(DO), saturation of DO, apparent oxygen utilization (AOU), chemical oxygen demand(COD), nutrient (ammonia, nitrite, nitrate, phosphate and silicate), N/P ratio and suspended solid(SS). The source of nutrients supply depended on the mineralization of organic matters and inputs of seawater from outside rather than runoff of freshwater. The phytoplankton biomass was changed within short interval period by nutrients change. And it was controlled by the combination of several environmental factors, especially of light intensity, ammonia and phosphate. The marine environmental characteristics were determined by the mineralization of organic matters in winter, by runoff of freshwater including high nutrients concentration in spring, by ammonia uptake and high phytoplankton productivity in summer, and phosphate supplied input seawater from outside of Kogeum-sudo in autumn. And Kogum-sudo was separated with 2 regions by score distributions of PCA. That is to say, one region was middle parts of straits which was characterized by the mixing seawater and the accumulated organic matters, other one region was Pungnam Bay and the water around Kogum Island which was done by high phytoplankyon biomass and productivity year-round.

  • PDF

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Industrial Wastewater containing Ammonium Nitrogen (암모니아성 질소함유 산업폐수처리를 위한 미생물의 분리 및 복합미생물제제의 개발)

  • Lee, Myoung-Eun;Mun, Seo-Jin;Kwon, Do-Hyuck;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • For effective treatment of wastewater containing ammonium nitrogen (NH4-N), AT2, AT9, and AT12 strains, having high total organic carbon (TOC) removal capability, and FN47, possessing excellent ammonia nitrogen removal capability present in the activated sludge in the aeration tank of food wastewater treatment plants, were isolated and identified. The cells of these isolated strains were used for microbial augmentation with FIW-1 in the defatted rice bran as a medium to treat industrial wastewater. The investigation of the cultural characteristics of these isolated strains in the aeration tank showed that the affinities for substrate of the isolated strains were extremely high, of which AT12 (Alcaligenes sp. AT12) was the highest among the isolated strains. Ammonium nitrogen removal efficiency in the food wastewater was 71% in the isolated strain FN47 (Microbacterium sp. FN47) treatment group. When only activated sludge was added in the lab scale pilot using food wastewater during continuous culture experiment, the TOC removal efficiency was 63%. Meanwhile, the removal efficiency of 92% was obtained when the microbial augmentation FIW-1 for wastewater treatment was applied. In addition, the chemical oxygen demand (COD) level from the effluent wherein microbial augmentation FIW-1 was input for the initial three days in the wastewater treatment site experiment showed a treatment rate of about 43%, which was increased to 62% after an elapse of 5 days.

Evaluation of Water Quality Characteristics on Tributaries of Dongjin River Watershed (동진강 유역내 하천의 특성별 영향평가)

  • Yun, Sun-Gang;Kim, Won-Il;Kim, Jin-Ho;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.243-247
    • /
    • 2002
  • Irrigation water quality along Donjin river watershed was monitored to find a possible pollutant, for maintaining water quality to achieve food safety through water quality preservation of river. As a pollution indicators, such as Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Nitrogen(T-N), and Total Phosphate(T-P) in Dongjin river were examined from May to November in 2001. The results were as follows : The BOD level of Dongjin river ranged from 2.84 to 6.45 mg/L, which would be in a II$\sim$IV grade of the potable water criteria by Ministry of Environment. Averaged BOD level of downstream DJ6(After Jeongupcheon confluence) was 4.07 mg/L. The average COD level of Dongjin river ranged from 11.20 to 32.96 mg/L. COD level of DJ6 rapidly increased rapidly after the junction of Dongjin river and Jungupcheon because it showed the latter had relatively high pollution level. T-N content were significantly high in all sites of Dongjin river ranged through 4.16 to 5.84 mg/L. T-P examined high concentration than another thing point by 0.19 mg/L after Jeongupcheon confluence as BOD and COD. COD of main stream was expressed high concentration to dry season after rainy season. In case of T-P, pollution degree of dry season before rainy season appeared and examined that quality of water was worsened go by dry season after rainy season. The water quality of Dongjin river was deteriorated with inflow of Jungupcheon polluted by municipal and industrial sites near Jungup city.

Activity of Methanogens in the High Rate Anaerobic Digestion of Swine Wastewater Containing High Ammonia (고농도 암모니아를 함유한 돈사폐수의 고율혐기성 소화시 메탄균의 활성연구)

  • Oh, Sae-Eun;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.981-987
    • /
    • 2000
  • Upflow anaerobic sludge blanket(UASB) reactor was operated for treating swine wastewater containing high ammonia nitrogen to assess their performance and toxicity of free ammonia concentration. In the reactor, chemical oxygen demand(COD) removed about 70% at $2.6kgCOD/m^3.day$ of organic loading rate(OLR) and 3 days of hydraulic retention time (HRT), while it was decreased when OLR and HRT was maintained $7kg\;COD/m^3.day$ and 2 days, respectively. Also UASB reactor was evaluated the activity of methane producing bacteria(MPB) according to change of free ammonia concentrations, MPB activity of applied sludge in the 500 and $1000mg-N/{\ell}$ of free ammonia concentration was inhibited by 4% and 40%, respectively. This clearly showed that free ammonia concentration less than $500mg-N/{\ell}$ showed no inhibition to MPB in anaerobic treatment of organics, UASB reactor was stabilized easily less than $1000mgVSS/{\ell}$ due to degradation of organic solids by the high activities of anaerobes.

  • PDF

A Study on the Seasonal Variation of Water Quality and Sediment Environment in Gwangyang Bay, Korea ($2004\sim2005$년 광양만의 해양수질 및 저질의 계절적 변동에 관한 연구)

  • Cho, Hyeon-Seo;Cho, Chon-Rae;Kang, Jo-Hae;Lee, Kyu-Hyong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.129-135
    • /
    • 2006
  • This study was performed to characterize the seasonal variation of water quality and sediment environment from May, 2004 to February, 2006 in 21 stations of Gwangyang bay. Gawngyang bay is located in the middle of south coast of Korea and semi-dosed with Yeosu peninsula, Gwangyang-city and Namhea-do. Water quality at the west coast of Myo-do were highly deteriorated than other stations. At summer season(July 2005), the concentration of the most analytical items were highly detected than other seasons and the lowest concentration was at the winter season(January 2005, February 2006). Especially, DIP and TP were highly detected around the coast of Yeosu industrial complex. N/P ratio were higher than 16 of Redfield ratio in the spring(May 2005) and winter(February 2006) at the surface layer. While at other seasons and most stations were lower than 16 of Redfield ratio. In the survey of sediment environment, ignition loss(IL), chemical oxygen demand(COD) and acid volatile sulfide(AVS) were in the range of $2.51\sim22.10%,\;2.65\sim48.41mg/g-dry\;and\;0.01\sim8.95mg/g-dry$, respectively. COD in surface sediment was highest at summer season AVS was highest at autumn. In sediment, the corelationship coefficients between COD and IL, COD and AVS were 0.65 and 0.44, respectively.

  • PDF

Evaluation of biodegradability according to bait type for crab pots (꽃게 통발용 미끼의 형태에 대한 생분해도 평가)

  • Jeong, Byung-Gon;Chang, Ho-Young;Koo, Jae-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.20-30
    • /
    • 2008
  • In order to evaluate the biodegradability of bait used in the pot for swimming crab, water tank experiments were conducted. Mackerel is the most commonly used natural form of bait to catch the swimming crabs, and therefore was used in this experiment for the biodegradability according to the manufacturing process of the bait. From the biodegradability test on chemical oxygen demand(COD), total nitrogen(T - N), total phosphorus(T - P), ammoniac nitrogen, nitrite nitrogen and nitrate nitrogen per unit weight of the bait based on the production rate and the accumulated amount of pollutants, it was concluded that the smaller the size of the mackerel pieces, the higher the production rate and accumulated amount of organic matter and nutrients which was unfavorable to water pollution. The amount of pollutants released from the intestine of the tuna was similar with that from the whole mackerel. For the operation period of 111 days, the accumulated concentrations of tested pollutants from the tuna which were 67.3 mgCOD/g d, 86.4 mgT N/g d, 3.1 mgT - P/g d, were almost half comparing with those from the mackerel which were 65.7 - 94.4 mgCOD/g d, 83.8 - 109.4 mgT - N/g d, 3.1 - 5.2 mgT - P/g d. The amount of pollutants released from the intestine of the tuna was slightly less than that from the mackerel that was cut into 8 pieces. but more than that from the mackerel which was not cut into pieces. Therefore, it can be concluded that the key factor in determining water pollution potential is not the kind of bait, but the processing or preparation method used.

Evaluation of Organic Matter and Trace Metal Contamination in Surface Sediments around the Geum River Estuary using Sediment Quality Guidelines (퇴적물 오염기준을 이용한 금강 하구역 표층 퇴적물내 유기물 및 미량금속 오염 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Sook-Yang;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.930-940
    • /
    • 2013
  • We evaluated contamination with organic matter and trace metals by analyzing grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, Hg, and As) in surface sediments at 28 stations around the Geum River estuary in July 2008. The surface sediments in the estuary were mainly composed of coarse sediment (sand and muddy sand), with mean grain size (Mz) ranging between $2-4{\O}$. The high concentrations of IL, COD, and trace metals were mainly found at stations in front of the Gusan outer port and industrial complex, and near the Seocheon coast with relatively fine sediments. In addition, the concentrations of IL and all trace metals, except Pb and As, showed good positive correlations with Mz, indicating that the concentrations of organic matter and trace metals were mainly dependent on sediment grain size. The concentrations of COD, AVS, and trace metals in most sediments did not exceed the sediment quality guideline (SQGs). Although the sediments in the study region are not polluted with organic matter and trace metals, there are many point sources of pollutants, such as Gusan port and industrial complex, Janghang refinery, and a thermoelectric power plant around the Geum River estuary. Thus, the management of coastal environments through periodic monitoring of organic matter and trace metals is required in the future.

Distributions of Organic Matter and Trace Metals in Intertidal Surface Sediment from the Mokpo-Haenam Coast (목포-해남 연안 조간대 퇴적물중 유기물 및 미량금속 분포 특성)

  • Hwang, Dong-Woon;Kim, Pyoung-Joong;Jung, Rae-Hong;Yoon, Sang-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.454-466
    • /
    • 2013
  • To evaluate the organic matter and trace metal pollution in intertidal sediment of the coastal zone, various geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], acid volatile sulfide [AVS], and metals [Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As]) were measured for the intertidal surface sediment of the mainland and islands between Mokpo and Haenam in the southwestern coast of Korea. The surface sediments consist mainly of finer sediments, such as mud and silt. The concentrations of IL, COD, and trace metals in intertidal sediment were relatively high in the shoreline of the mainland than in that of islands and those in some stations exceeded the sediment quality guidelines (SQGs). Moreover, the concentrations of IL, COD, and trace metals (except As) in sediment showed relatively good positive correlations with mean grain size, indicating that the concentrations of organic matter and trace metals in intertidal sediment of the study region are dependent on grain size of sediment. Pollution evaluation for trace metals using geochemical assessment techniques, such as enrichment factor, geoaccumulation index, and SQGs, suggested that the intertidal sediments in the study region show light pollution with Cr and moderate pollution with As. More extensive interdisciplinary studies are required to determine the potential causes of As pollution in intertidal sediment.