• Title/Summary/Keyword: COD(chemical oxygen demand)

Search Result 513, Processing Time 0.025 seconds

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

The wastewater treatment system with high performance based on electrochemical interface reaction using dimensionally stable anode with simple manufacturing (전기화학 계면반응에 기초한 DSA 전극을 사용한 고성능 폐수처리 시스템)

  • Na, Young Soo;Lee, Man Sung;Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.101-105
    • /
    • 2018
  • With the rapidly growing of the population and industrization of cities, the clean and affordable water resources have gained immense interest because of remaining about 780 million people still lack access to it. However, present wastewater treatment systems have been faced with various issues, such as low processing efficiency, high operational costs and the requirement of a large area for manufacturing. It is therefore urgently required to develop an inexpensive and efficient wastewater treatment system. As the one of these efforts, we suggested and successfully demonstrated the wastewater treatment system using and electrochemical method via a dimensionally stable anode (DSA) based on rutile type $RuO_2$. Our system achieved biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiently at the respective rates of 52.0%, 77.8%, and 65.6% from household wastewater. In addition, we were able to remove BOD, COD, total nitrogen (TN), and total phosphorus (TP) from animal husbandry wastewater at rates of 92.9%, 75.6%, 35.1%, and 100%, respectively, thereby achieving dramatic reductions. Considering the excellent removal efficiency and the small size of this device, electrochemical wastewater treatment using a DSA coated in rutile $RuO_2$ presents a promising option for the treatment of both household and animal husbandry wastewater.

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

Predictation of the Concentrations and Distributions of Refractory Organic Matters in Wastewater using Spectroscopic Characteristics (분광특성을 이용한 하·폐수시료 내 난분해성 유기물 농도 및 분포 예측)

  • Lee, Bomi;Park, Min-Hye;Lee, Tae-Hwan;Hur, Jin;Yang, Heejung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.560-567
    • /
    • 2009
  • Treated or untreated wastewater may be a major source of refractory organic matters (R-OM) in drinking water sources. For this study, spectroscopic characteristics of wastewater OM were investigated using the samples from 20 wastewater treatment plants, which are located at the upstream of the lake Paldang, to suggest a estimate index for R-OM in wastewater. R-OM was quantified by measuring total organic carbon (TOC) concentration of the wastewater samples remaining after 28-day dark incubation. Among the traditional OM indices such as chemical oxygen demand (COD) and initial TOC, CODMn showed the lowest correlation coefficients with R-TOC of the samples. The ratios of carbonaceous biochemical oxygen demand (CBOD) to $COD_{Cr}$ had a better correlation with the percent distribution of R-OM than $BOD/COD_{Cr}$ ratios. terrestrial humic-like fluorescence (THLF) exhibited the highest correlation coefficient with R-TOC among the indices obtained from the synchronous fluorescence spectra of the samples. Milori index, one of the humification indices, showed a good correlation with the percent distribution of wastewater. This study demonstrated that fluorescence properties might be a better indices to estimate the concentrations and the distributions of wastewater OM compared to the specific UV absorbance (SUVA) values. Some useful formulas based on OM spectroscopic characteristics were finally suggested to predict R-OM in wastewater.

Water Quality Properties of Tributaries of Daechung Lake, Korea (대청호 유입지천의 수질 특성)

  • Shim, Moo Joon;Yoon, Jae Yong;Lee, Soo Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.12-25
    • /
    • 2015
  • The tributaries of Daechung Lake play an important role in controlling eutrophication in the lake, which is used for agricultural purposes and as potable water. However, water quality properties were not extensively studied in the tributaries of Daechung Lake. The objectives of this study are to investigate spatial and temporal properties of water quality and to characterize streams which could threaten water quality of Daechung Lake. For this study, water samples were weekly or monthly collected from February 2014 to October 2014 in 9 streams. Water quality parameters analyzed in this study include biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen and phosphorus (TN and TP), suspended solids (SS), and chlorophyll a. Based on temporal distribution and principal component analysis, BOD, COD, TOC, SS, and TP were controlled by not only river discharge that increased during summer due to heavy rain fall, but also due to anthropogenic input (e.g., bridge construction and/or agricultural activity). Dilution is also one of the factors explaining TN and conductivity, both of which decreased with increased discharge. Generally, concentrations of contaminants (BOD, COD, TOC, TN and TP) in the tributaries were higher than those of Daechung Lake. However, pollution load indicated that only the main channel of Geum River and Sook Stream may largely influence lake waters, attributed mostly to their large volumes. This implies that the main channel and Sook Stream are the major influences on the water quality of Daechung Lake.

Quantity and Characteristics of Manure by Holstein Milking Cow (홀스타민 착유우의 분뇨배설량과 이화학적 제특성)

  • 최동윤;강희철;최희철;곽정훈;김태일;김재환;한정대;최홍림
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.169-172
    • /
    • 2001
  • This research was carried out to investigate the quantity of Holstein milking cow manure excreted and their characteristics. The average body weight of the Holstein milking cow during experiment was 550.0kg, and fried intake(DM basis), water consumption, milk yield was 16.7, 85.4, 24.4k7/day/head, repectively. The average manure production of Holstein milking cow was 63.5kg/day/head(feces 42.3, urine 10.2kg). The average moisture content of feces and urine was 83.9%, 96.9%, respectively. Wastewater pollutant concentration of $BOD_5$(Biochemical Oxygen demand). $COD_{Mn}$ (Chemical Oxygen demand), SS(Suspended Solids), T-N(Total Nitrogen) and T-P(Total Phosphorus), excreted from Holstein milking cow was 16,560, 40,329, 78,500, 2,854, 577mg/ l in feces and 4,580, 7,575, 370, 4,164, 7mg/ l in urine, repectively.

  • PDF