Predictation of the Concentrations and Distributions of Refractory Organic Matters in Wastewater using Spectroscopic Characteristics

분광특성을 이용한 하·폐수시료 내 난분해성 유기물 농도 및 분포 예측

  • Lee, Bomi (Department of Earth and Environmental Sciences, Sejong University) ;
  • Park, Min-Hye (Department of Earth and Environmental Sciences, Sejong University) ;
  • Lee, Tae-Hwan (Department of Earth and Environmental Sciences, Sejong University) ;
  • Hur, Jin (Department of Earth and Environmental Sciences, Sejong University) ;
  • Yang, Heejung (Han-River Environment Research Center)
  • 이보미 (세종대학교 지구환경과학과) ;
  • 박민혜 (세종대학교 지구환경과학과) ;
  • 이태환 (세종대학교 지구환경과학과) ;
  • 허진 (세종대학교 지구환경과학과) ;
  • 양희정 (국립환경과학원 한강물환경연구소)
  • Received : 2009.03.13
  • Accepted : 2009.06.09
  • Published : 2009.07.30

Abstract

Treated or untreated wastewater may be a major source of refractory organic matters (R-OM) in drinking water sources. For this study, spectroscopic characteristics of wastewater OM were investigated using the samples from 20 wastewater treatment plants, which are located at the upstream of the lake Paldang, to suggest a estimate index for R-OM in wastewater. R-OM was quantified by measuring total organic carbon (TOC) concentration of the wastewater samples remaining after 28-day dark incubation. Among the traditional OM indices such as chemical oxygen demand (COD) and initial TOC, CODMn showed the lowest correlation coefficients with R-TOC of the samples. The ratios of carbonaceous biochemical oxygen demand (CBOD) to $COD_{Cr}$ had a better correlation with the percent distribution of R-OM than $BOD/COD_{Cr}$ ratios. terrestrial humic-like fluorescence (THLF) exhibited the highest correlation coefficient with R-TOC among the indices obtained from the synchronous fluorescence spectra of the samples. Milori index, one of the humification indices, showed a good correlation with the percent distribution of wastewater. This study demonstrated that fluorescence properties might be a better indices to estimate the concentrations and the distributions of wastewater OM compared to the specific UV absorbance (SUVA) values. Some useful formulas based on OM spectroscopic characteristics were finally suggested to predict R-OM in wastewater.

Keywords

Acknowledgement

Grant : 한강수계 난분해성 물질 증감요인 규명 및 관리방안 연구

References

  1. 국립환경과학원(2005). 한강수계 오염총량관리 대상물질 연구사업. 한강수계관리
  2. 김재구, 신명선, 장창원, 정성민, 김범철(2007). 한강수계주요하천과 호수내 TOC와 DOC분포 및 BOD와 COD의 산화율 비교. 수질보전 한국물환경학회지, 23(1), pp. 72-80
  3. 박민혜, 이보미, 이태환, 허진(2009). 하수처리장 내 유입수와 방류수 유기물 특성 비교. 수질보전 한국물환경학회지, 게재 예정
  4. 장세주, 이성호, 박해식, 박청길(2007). 하수처리장 유출수의 NOD를 고려한 BOD 측정에 관한 연구. 수질보전 한국물환경학회지, 23(2), pp. 188-192
  5. 정철우, 손희종, 신현준, 손인식(2007). 단신 : 막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성. 한국화학공학회 화학공학, pp. 669-676
  6. 최승봉, 김범철, 최규열, 정의호(1994). 시료종류에 따른 BDD 탈산소계수(k)와 온도보정 계수($\theta$)에 관한 연구. 한국물환경학회 학술발표회 요지집, pp. 114-121
  7. 허진, 신재기, 박성원(2006). 하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석. 대한환경공학회지, 28(9), pp. 940-948
  8. Baker, A. (2001). Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science & Technology, 35, pp. 948-953 https://doi.org/10.1021/es000177t
  9. Baker, A. and Spencer, R. G. M. (2004). Characterization of dissolved organic matter from source to seausing fluorescence and absorbance spectroscopy. Science of the Total Environment, 333, pp. 217-231 https://doi.org/10.1016/j.scitotenv.2004.04.013
  10. Barker, D. J. and Stuckey, D. C. (1999). A Review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33, pp. 3063-3082 https://doi.org/10.1016/S0043-1354(99)00022-6
  11. Chen, W., Westeerhoff, P., Leenheer, J. A., and Booksh, K. (2003). Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, pp. 5701-5710
  12. Chen, Z., Hu, C., Conmy, R. N., Muller-Karger, F., and Swarzenski, P. (2007). Colored dissolved organic matter in Tampa Bay, Florida. Marine Chemistry, 104, pp. 98-109 https://doi.org/10.1016/j.marchem.2006.12.007
  13. Chin, Y. P., Aiken, G. R., and Danielsen, K. M. (1997). Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environmental Science & Technology, 31(6), pp. 1630-1635 https://doi.org/10.1021/es960404k
  14. Fuentes, M., Conzalez-Gaitano, G., and Garcia-Mina, J. M. (2006). The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, 37, pp. 1949-1959 https://doi.org/10.1016/j.orggeochem.2006.07.024
  15. Helms, J. R., Stubbins, A., Ritchie, J. D., and Minor, E. C.(2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. American Society of Limnology and Oceanography, 53(3), pp. 955-969 https://doi.org/10.4319/lo.2008.53.3.0955
  16. Hudson, N. J., Baker, A., and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-.a review. Rivers Research, 23(6), pp. 31-49 https://doi.org/10.1002/rra.1005
  17. Hur, J. and Kong, D. S. (2008). Use of synchronous fluorescence spectra to estimate biochemical oxygen demand (BOD) of urban rivers affected by treated sewage. Environmental Technology, 29(4), pp. 435-444 https://doi.org/10.1080/09593330801984472
  18. Hur, J. and Kim, G. (2009). Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Chemosphere, 75, pp. 483-490 https://doi.org/10.1016/j.chemosphere.2008.12.056
  19. Imai, A., Fukushima, T., Matsushige, K., Kim, Y. H., and Choi, K. S. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36, pp. 859-870 https://doi.org/10.1016/S0043-1354(01)00283-4
  20. Jarusutthirak, C. and Amy, G. (2006). Role of Soluble Micribial Products (SMP) in Membrane Fouling and Flux Decline. Environmental Science & Technology, 40, pp. 969-974 https://doi.org/10.1021/es050987a
  21. Kalbitz, K., Geyer, S., and Geyer, W. (2000). A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere, 40, pp. 1305-1312 https://doi.org/10.1016/S0045-6535(99)00238-6
  22. Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E. (2003). Biodegration of soil-derived dissolved organic matter as related to its properties. Geoderma, 113, pp. 273-291 https://doi.org/10.1016/S0016-7061(02)00365-8
  23. Kim, B., Choi, K., Kim, C., Lee, U., and Kim, Y. (2000). Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservair, Lake Soyang, Korea. Water Research, 34(14), pp. 3495-3504 https://doi.org/10.1016/S0043-1354(00)00104-4
  24. Lee, S. and Ahn, K. H. (2004). Monitering of COD as an organic indicator in Wastewater and treated effluent by fluorescence excitation-emission (FEEM) matrix characteriwation. Water Science and Technology, 50(8), pp. 57-63
  25. Milori, D., Martin-Neto, L., Bayer, C., Mielniczuk, J., and Vagnato, V. (2002). Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science, 167(11), pp. 739-749 https://doi.org/10.1097/00010694-200211000-00004
  26. Senesi, N., Miano, T., Provenzano, M. R., and Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Science, 152, pp. 259-271 https://doi.org/10.1097/00010694-199110000-00004
  27. Servais, P., Garnier, J., Demarteau, N., Brion, N., and Billen, G. (1999). Supply of organic matter and bacteria to aquatic ecosystems through waste water effluent. Water Research, 33, pp. 3521-3531 https://doi.org/10.1016/S0043-1354(99)00056-1
  28. Twardowski, M. S., Boss, E., Sullivan, J. M., Percy, L., and Donaghay, P. L. (2004). Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Marine Chemistry, 89, pp. 69-88 https://doi.org/10.1016/j.marchem.2004.02.008
  29. Westerhoff, P., Chen, W., and Esparza, M. (2001). Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. Environmetal Quality, 30(6), pp. 2037-2046 https://doi.org/10.2134/jeq2001.2037
  30. Yamashita, Y. and Tanoue, E. (2003). Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry, 82, pp. 255-271 https://doi.org/10.1016/S0304-4203(03)00073-2
  31. Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphre, 38(1), pp. 45-50 https://doi.org/10.1016/S0045-6535(98)00166-0